

Spis treści

Nasz elementarz. Klasa 1. Część 3. Adaptacja dla uczniów ze specjalnymi potrzebami edukacyjnymi. Multibook

 RbdtQxLe9nCyI

bd35bf13d919eaa03d0727c0d007b3ccebcadfdd.js
define([
 'jquery',
 'backbone',
 'underscore',
 'modules/core/Registry',
 './WOMIContainerBase',
 'layout',
 'modules/core/HookManager',
 './WOMIMenuLayout',
 'portal_instance',
 'libs/jquery.fancybox'], function ($, Backbone, _, Registry, Base, layout, HookManager, WOMIMenuLayout, portal_instance) {
 var deviceDetection = require('device_detection');

 var LICENSES = [];

 function resolveLicense(value, key) {
 for (var l in LICENSES) {
 if (LICENSES[l][key] == value) {
 return LICENSES[l];
 }
 }
 return resolveLicense('CC0', 'id');
 }

 var WOMIContainer = Base.extend({

 initialize: function (options) {
 this.init(this.$el);
 },
 init: function (element) {
 this.roles = {};
 this._mainContainerElement = $(element);
 this.menuItems = [];
 var _this = this;
 console.log("add event listener fullscreen");
 this._mainContainerElement[0].addEventListener('fullscreen', function () {
 console.log("fullscreen listener");
 _this._fullscreenMenuItem().callback();
 });
 this._initAll();

 this.on('openContext', function () {
 _this._fullscreenMenuItem().callback();
 });
 },

 _initAll: function () {
 var container = $(this._mainContainerElement);
 container.data('womiObject', this);

 var roles = {};
 if (container.data('roles')) {
 var r = container.data('roles').split(',');
 roles = _.object(r, _.map(r, function () {
 return true
 }));
 }

 var related = container.find('.related');
 related = (related.length > 0 ? related : null);
 if (related) {
 related = new WOMIContainer({el: related.children()});
 }

 var divs = container.not('.related').find('.classic').first();
 var contentClassic = divs.data('content');

 var textContent = divs.find('.womi-text-content');
 if (textContent.length == 1) {
 contentClassic = textContent.html();
 textContent.remove();
 }

 this.classic = {
 options: {
 title: container.data('title'),
 partTitle: container.data('part-title'),
 roles: roles,
 content: contentClassic,
 related: related,
 womiId: container.data('womi-id'),
 functions: {
 resolveLicense: resolveLicense
 }
 }
 };

 divs = divs.children();
 this.classic.options.alt = divs.data('alt');
 var className = this._resolveObjectClassType(divs);
 this.classic.object = new (this.CLASS_MAPPINGS())[className]({
 el: divs,
 options: this.classic.options,
 parent: this
 });

 var mobile = container.not('.related').find('.classic').first();

 var contentMobile = mobile.data('content');
 textContent = mobile.find('.womi-text-content');
 if (textContent.length == 1) {
 contentMobile = textContent.html();
 textContent.remove();
 }
 if (mobile) {
 this.mobile = {
 options: {
 title: container.data('title'),
 partTitle: container.data('part-title'),
 roles: roles,
 content: contentMobile,
 related: related,
 womiId: container.data('womi-id'),
 functions: {
 resolveLicense: resolveLicense
 }
 }
 };
 divs = mobile.children();
 this.mobile.options.alt = divs.data('alt');
 className = this._resolveObjectClassType(divs);
 this.mobile.object = new (this.CLASS_MAPPINGS())[className]({
 el: divs,
 options: this.mobile.options,
 parent: this
 });
 }
 this.selected = this.classic;

 this.menuItems = [];
 },

 getTitleAndContent: function () {
 return {
 title: this.selected.object.options.title,
 partTitle: this.selected.object.options.partTitle,
 content: this.selected.object.options.content
 }
 },

 _renderMenu: function () {
 this.menuItems = [];
 var fsItem = this._fullscreenMenuItem();
 if (fsItem) {
 this.menuItems.push(fsItem);
 }
 if (this.selected.object) {
 var manageButtons = this.selected.object.getWomiManageButtons();
 var _this = this;
 if (manageButtons) {
 _.each(manageButtons, function (btn) {
 _this.menuItems.push(btn);
 });
 }
 }

 return this._generateMenu();
 },

 avatarContainer: function (container, config) {
 function res() {
 var a = $(window).height() * config.heightPercent;
 var b = a * config.ratio;
 $(container).css({
 width: b,
 height: a
 }).addClass('womi-avatar');
 }

 res();
 this.selected.object.on('resized', function () {
 res();
 });
 HookManager.executeHook('avatarCreatedHook', [container, config]);
 },

 render: function () {
 var container = this._mainContainerElement;
 container.html('');
 if (this.selected.options.roles.context && !this.selected.options.roles.embedded) {
 container.hide();
 return;
 }

 if (this.selected.options.roles.avatar) {
 container.append(this.selected.object.render());
 this.avatarContainer(container, _.extend({
 heightPercent: 0.25,
 ratio: 1
 }, this.selected.object.avatarConfig()));
 this.selected.object.trigger('renderDone');
 return;
 }

 if (this.selected.options.title) {
 container.append('<div class="title">' + this.selected.options.title + '</div>');
 }
 var selectedEl = this.selected.object.render();
 container.append(selectedEl);

 var content = this.classic.options.content;
 if (deviceDetection.isMobile) {
 if (this.mobile && this.mobile.options.content) {
 content = this.mobile.options.content;
 }
 }
 if (content && content != '') {
 this._content = content;
 container.append($('<div>', {'class': 'caption', html: content}));
 }
 var menu = this._renderMenu();
 container.append(menu);

 if (this.selected.options.roles.transparent) {
 selectedEl.css('visibility', 'hidden');
 menu.css('display', 'none');
 container.click(_.bind(function () {
 this.trigger('openContext');
 }, this));
 }

 this.selected.object.trigger('renderDone');
 },

 _lookForBlocks: function () {
 if (this._mainContainerElement.parent().hasClass('related')) {
 this._stopLoad = true;
 this._discoverTitle = function () {
 };
 }
 //console.log(this._mainContainerElement.not('.related'), this._mainContainerElement);
 this._classic = $(this._mainContainerElement.not('.related').find('.classic').first());
 this._mobile = $(this._mainContainerElement.not('.related').find('.mobile').first());
 this._related = $(this._mainContainerElement.find('.related'));
 this._related = (this._related.length > 0 ? this._related : null);
 //this._selectedBlock = this._mobile.length && this._mobile.data('auto') && epGlobal.isMobile ? this._mobile : this._classic;
 this._selectedBlock = this._classic;

 this._lastClickedMenuItem = null;
 },
 _discoverTitle: function (notAppend) {
 var title = this._mainContainerElement.data('title');

 if (title && title != '') {
 this._title = title;
 if (!notAppend) {
 this._mainContainerElement.prepend($('<div>', {'class': 'title', html: title}));
 }
 }
 },
 show: function () {
 this._mainContainerElement.show();
 },
 hide: function () {
 this._mainContainerElement.hide();
 },
 isShown: function () {
 return this._mainContainerElement.css('display') !== 'none';
 },
 _discoverContent: function () {
 var _this = this;
 var roles = this._mainContainerElement.data('roles');
 this.roles = {};
 if (roles) {
 var r = roles.split(',');
 this.roles = _.object(r, _.map(r, function () {
 return true
 }));
 }
 var zoomable = this._mainContainerElement.data('zoomable');
 if (zoomable) {
 this.roles.zoomable = zoomable;
 }
 if (this.roles.context && !this.roles.avatar) {
 this._stopLoad = true;
 this._discoverTitle(true);
 this._mainContainerElement.css('display', 'none');
 } else if (this.roles.context && this.roles.avatar) {
 this._discoverTitle(true);
 } else if (this.roles.transparent) {
 this._discoverTitle(true);
 this._classic.css('visibility', 'hidden');
 this.__fs = this._fullscreenMenuItem;
 this._fullscreenMenuItem = function () {
 return null;
 };
 this._mainContainerElement.click(function () {
 var call = _this.__fs();
 call && call.callback();
 });
 if (this._mobile.length) {
 this._mobile.css('visibility', 'hidden');
 }
 } else {
 //discover title
 this._discoverTitle();
 }
 //discover all blocks

 var divs = this._classic.children();
 //initialize content
 var className = this._resolveObjectClassType(divs);
 this._classic.womiObj = new (this.CLASS_MAPPINGS())[className]({el: divs});
 this._classic.womiObj._related = this._related;
 this._classic.womiObj.getMenuItems().forEach(function (entry) {
 var item = {
 name: 'classic' + entry.name,
 callback: function () {
 _this._lastClickedMenuItem = item;
 _this.switchToClassic();
 entry.callback();
 return false;
 }
 };
 _this.menuItems.push(item);
 });

 if (this._mobile.length) {
 divs = this._mobile.children();
 className = this._resolveObjectClassType(divs);
 this._mobile.womiObj = new (this.CLASS_MAPPINGS())[className]({el: divs});
 this._mobile.womiObj._related = this._related;
 this._mobile.womiObj.getMenuItems().forEach(function (entry) {
 var item = {
 name: 'mobile' + entry.name,
 callback: function () {
 _this._lastClickedMenuItem = item;
 _this.switchToMobile();
 entry.callback();
 return false;
 }
 };
 _this.menuItems.push(item);
 });
 }
 this._selectedBlock.womiObj.setRoles(this.roles);
 var fsItem = this._fullscreenMenuItem();
 if (fsItem) {
 this.menuItems.push(fsItem);
 }

 var womiManageButtons = _this._selectedBlock.womiObj.getWomiManageButtons();
 if (!deviceDetection.isMobile && womiManageButtons != null) {
 for (var item in womiManageButtons) {
 _this.menuItems.push({
 name: item,
 callback: function () {
 (womiManageButtons[this.name])();
 return false;
 }
 });
 }
 }
 if (!this._stopLoad) {
 this.load();
 }
 },
 contextCallback: function () {
 if (this.selected.object.contextCallback) {
 this.selected.object.contextCallback();
 return true;
 }
 return false;
 },
 _fullscreenMenuItem: function () {
 var _this = this;
 if (_this.selected.object.hasFullscreenItem) {
 // CP EDIT: comment code below. Always show fullscreen button
 // if (!_this.selected.object.hasFullscreenItem()) {
 // return null;
 // }
 }
 return {
 name: 'fullscreen',
 callback: function () {
 var fsElement = _this.selected.object.getFSElement();
 var sourceIframe = _this.selected.object._engineContainer.find("iframe");

 if(sourceIframe.length > 0) {
 sourceIframe[0].contentWindow.postMessage("fullscreen", "*");
 }

// fsElement.afterLoad(function(){
//
// });

 _this.selected.object.setRoles(_this.roles);
 if (fsElement != null) {
 $.fancybox.open(fsElement.element, $.extend({
 loop: false,
 margin: 1,
 padding: 1,
 scrolling: 'no',
 beforeLoad: function () {
 },
 afterShow: function () {
 if (fsElement.afterLoad && !fsElement.loaded) {
 fsElement.afterLoad();
 }

 $('.fancybox-inner').off('scroll').on('scroll', function () {
 if (this.scrollTop > 0) {
 this.scrollTop = 0;
 }
 })

 //CP EDIT
 $('.fancybox-inner').wrap('<div class="womi-container" tabindex="-1"></div>');
 $('.fancybox-overlay').css('z-index', 100);
 //END CP EDIT

 _this.closeButtonConfigure();
 //$('.fancybox-inner').css('overflow', 'hidden');
 $('body').css('overflow', 'hidden');
 $()

 var iframe = $(fsElement.element).find('iframe');
 if(iframe.length > 0) {
 iframe[0].contentWindow.focus();
 }
 },
 onUpdate: function () {
 if (fsElement.cancelUpdate) {
 return;
 }
 if (fsElement.loaded) {
 fsElement.loaded = false;

 $(".fancybox-overlay").on("remove", function () {
 setTimeout(function () {
 _this._fullscreenMenuItem().callback();
 }, 300);
 });
 $.fancybox.close(true);
 } else {
 fsElement.loaded = true;
 }
 },
 afterClose: function () {
 fsElement.afterClose && fsElement.afterClose();
 $('div.tooltipsy').remove();
 $('body').css('overflow', '');
 }
// helpers: {
// overlay: {
// locked: true
// }
// }
 }, fsElement.options));
 }
 return false;
 }
 };
 },
 _getBetterFSSize: function (width, height) {
 var currW = typeof width === 'undefined' ? this._mainContainerElement.width() : width;
 var currH = typeof height === 'undefined' ? this._mainContainerElement.height() : height;
 var ratio = currW / currH;
 var props = {};
 props.padding = 3;
 props.margin = 3;
 var offset = 2 * props.margin + 2 * props.padding;
 if (ratio <= 1) {
 props.width = $(window).width() - offset;
 props.height = $(window).width() * ratio - offset;
 } else {
 props.height = $(window).height() - offset;
 props.width = $(window).height() * ratio - offset;
 }
 props.autoSize = false;
 //props.autoCenter = false;

 return props;
 },
 load: function () {
 this._selectedBlock.womiObj.load();
 //this._menuInit();
 var generated = this._selectedBlock.find('[class^=generated]');
 if (generated.length) {
 var content = this._selectedBlock.data('content');
 if (deviceDetection.isMobile) {
 if (this._mobile.length > 0) {
 content = this._mobile.data('content') || content;
 }
 }
 if (content && content != '') {
 this._content = content;
 $(generated[0]).after($('<div>', {'class': 'caption', html: content}));
 }
 }
 this._generateMenu();
 },
 dispose: function () {
 this.selected.object.dispose();
 },
 switchToClassic: function () {
 this.selected.object.dispose();
 this.selected = this.classic;
 this._switchCallback();
 },
 switchToMobile: function () {
 this.selected.object.dispose();
 this.selected = this.mobile;
 this._switchCallback();
 },
 _switchCallback: function () {
 },
 _resolveObjectClassType: function (divs) {
 if (divs.length > 1) {
 return 'multiple';
 } else {
 if (divs[0]) {
 return divs[0].className;
 } else {
 return 'dummy';
 }
 }
 },
 _licenseUrl: function () {
 if (this.selected.object._licenseUrl) {
 return this.selected.object._licenseUrl();
 }
 return '';
 },
 hasButtons: function () {
 return this.selected.object.hasButtons();
 },
 _licenseItem: function () {
 var _this = this;
 // require('modules/core/WomiManager').womiEventBus.on('toggleWOMILicense', function () {
 // _this._menuContainer.find('li > .license').toggle();
 // });
 var defaultObj = {
 license: 'brak'
 };

 function fancyCreate(object) {
 var element = $('<div>', {'class': 'meta-reader-info'});
 object = _.extend(defaultObj, object);
 object.author && element.append('<h3>autor: ' + object.author + '</h3>');
 //object.license = (object.license == 'PÅ�' ? 'Politechnika Å�Ã³dzka' : object.license);
 var _license = resolveLicense(object.license, 'id');
 element.append('<h3>licencja: ' + _license.name + '' + (_license.link !== '' ? ('
' + _license.link + '') : '') + '</h3>');

 if (object.licenseAdditionalInfo) {
 element.append('<p>' + object.licenseAdditionalInfo + '</p>');
 }

 _this._fancyBoxPattern(element);
 }

 return {
 name: 'license',
 callback: function () {
 var lic = _this._licenseUrl();
 if (lic.type == 'source') {
 $.get(lic.src, function (data) {
 fancyCreate(data);
 }, 'json');
 } else if (lic.type == 'object') {
 fancyCreate(lic.src);
 }

 return false;
 }
 }
 },

 _fancyBoxPattern: function (element) {
 $.fancybox.open({
 wrapCSS: 'fancybox-modal',
 content: element,
 loop: false,
 margin: 1,
 padding: 1,
 scrolling: 'no',
 width: '66%',
 height: 'auto',
 afterShow: function () {
 $('a.fancybox-close').addClass('fancybox-close-topbar');
 },
 helpers: {
 overlay: {
 closeClick: true,
 closeBtn: true,
 locked: false,
 css: {
 'background': 'rgba(255, 255, 255, 0.6)'

 }
 }
 }
 });
 },

 _altTextItem: function () {
 var _this = this;

 var altTextContainer = $('<div class="alt-text-container">' + _this.selected.options.alt + '</div>');

 if (!(localStorage.epoAltText == 'on')) {
// altTextContainer.hide();
 altTextContainer.addClass('alt-text-hidden');
 }

 // @removed
 // this._mainContainerElement.prepend(altTextContainer);

 if (portal_instance.readerApiModes.debug) {
 // require('modules/core/WomiManager').womiEventBus.on('toggleWOMIAltText', function () {
 // _this._menuContainer.find('li > .alttext').toggle();
 // altTextContainer.toggleClass('alt-text-hidden');
 // });
 }

 return {
 name: 'alttext',
 callback: function () {
 _this._fancyBoxPattern('<div>' + _this.selected.options.alt + '</div>')
 }
 }
 },

 _disabledAlternativeItem: function () {
 var _this = this;

 return {
 name: 'disabledAlt',
 callback: function () {
 Registry.get('layout').trigger('openAlttextTooltip', $('body'), '#' + _this._mainContainerElement.attr('data-disabled-alternative'));
 }
 }
 },

 _generateMenu: function () {
 if (Registry.get('contextMenu') == false) {
 return;
 }
 var womiMenu = new WOMIMenuLayout();

 var licItem = this._licenseItem();
 HookManager.executeHook('licenseItemAddingHook', [this._mainContainerElement, licItem], _.bind(function () {
 licItem && (this.menuItems = [licItem].concat(this.menuItems));
 }, this));

 womiMenu.addMenuItem(this._altTextItem());

 if (this._mainContainerElement.attr('data-disabled-alternative')) {
 womiMenu.addMenuItem(this._disabledAlternativeItem());
 }

 this.menuItems.forEach(function (entry) {
 womiMenu.addMenuItem(entry);
 });
 this._menuContainer = womiMenu.getMenu();
 //this._mainContainerElement.append(this._menuContainer);
 this.classic.object.postProcessMenu(this._menuContainer);

 return this._menuContainer;
 }
 });

 return WOMIContainer;
});

64b6085c557f53745406e68f7636ad9cbc94c8f8.js
define(['jquery', 'backbone', 'underscore', 'modules/core/Registry'], function ($, Backbone, _, Registry) {
 return Backbone.View.extend({

 CLASS_MAPPINGS: function () {
 var registry = Registry.get('womi');
 return {
 'dummy': registry.DummyContainer,
 'image-container': registry.WOMIImageContainer,
 'movie-container': registry.WOMIMovieContainer,
 'audio-container': registry.WOMIAudioContainer,
 'icon-container': registry.WOMIIconContainer,
 'attachment-container': registry.WOMIAttachmentContainer,
 'interactive-object-container': registry.WOMIInteractiveObjectContainer,
 'multiple': registry.MultipleWOMIContainer
 }
 },
 avatarConfig: function(){
 return {}
 },
 initialize: function (options) {
 this.init(this.$el, options.options);
 this.parent = options.parent;
 },
 init: function (element, opts) {
 this.options = opts;
 this.roles = opts.roles || {};
 this._mainContainerElement = $(element);
 this.menuItems = [];
 this._lookForBlocks();
 this._discoverContent();
 this._load();
 },
 render: function () {
 this._mainContainerElement.remove();
 this._mainContainerElement = $('<div>', { 'class': this.containerClass });
 this.load();
 this.fullyLoaded();
 return this._mainContainerElement;
 },
 _lookForBlocks: function () {
 },
 _discoverContent: function () {
 },
 _load: function () {
 },
 load: function () {
 },
 dispose: function () {
 },
 getFSElement: function () {
 return null;
 },
 _dispatchEvent: function (message, object) {
 var ev = new CustomEvent(message, {
 detail: object,
 bubbles: true,
 cancelable: true
 });
 this._mainContainerElement[0].dispatchEvent(ev);
 },
 fullyLoaded: function(){
 this.trigger('fullyLoaded');
 },
 getMenuItems: function () {
 var _this = this;
 return [
 {
 name: '',
 callback: function () {
 _this.load();
 }
 }
]
 },
 postProcessMenu: function (menu) {
 },

 getWomiManageButtons: function () {
 return null;
 },
 callResize: function () {
 var slctd = this.selected;
 if (slctd && slctd.object && slctd.object._resize) {
 slctd.object._resize()();
 slctd.object.trigger('resized');
 }
 },
 callRecalculateSize: function(){
 var slctd = this.selected;
 if (slctd && slctd.object && slctd.object._recalculate) {
 slctd.object._recalculate();
 slctd.object.trigger('resized');
 }
 },
 womiCloneTo: function (node) {
 var clone = _.extend({}, this);
 clone.cid = null;
 clone._mainContainerElement = $(node);
 return clone;
 },
 getAnyImage: function() {
 return null
 },
 getMiniature: function () {
 var slctd = this.selected;
 if (slctd && slctd.object) {
 var img = slctd.object.getAnyImage();
 if (img) {
 var cls = Registry.get('womi').WOMIImageContainer;
 var im = new cls({el: $(img), options: slctd.object.options});
 return im.getThumbUrl();
 }
 }
 return '';
 },
 closeButtonConfigure: function () {
 $('div.fancybox-overlay').addClass('fullscreen-background');
 $('div.fancybox-skin').css('background', 'none');
 var fancyBoxClose = $('a.fancybox-close');
 fancyBoxClose.addClass('fullscreen-close-image');
 fancyBoxClose.addClass('hastip');
 fancyBoxClose.attr('title', 'Zamknij');
 fancyBoxClose.attr('aria-label', 'Zamknij');
 fancyBoxClose.tooltipsy({
 alignTo: 'element',
 offset: [-1, 1]
 });
 },
 setRoles: function (roles) {
 this.roles = roles;
 },
 _licenseUrl: function () {
 if (this._src) {
 return { src: this._src + '/../metadata.json',
 type: 'source' }
 }
 return ''
 },
 hasFunctionality: function () {
 return false;
 },

 hasButtons: function () {
 return false;
 },
 altText: function(){
 if(this._altText){
 return this._altText;
 }else{
 return null;
 }
 }
 });

});

b90754b9f12fd0b74dd7e4ce5002adcb6a171af6.js
define(['jquery', 'backbone', 'underscore', 'modules/core/Logger'], function ($, Backbone, _, Logger) {
 return Backbone.View.extend({
 name: 'Layout',

 constructor: function (options) {
 this.components = {};
 this._kernel = options.kernel;
 this._kernel.registerLayout(this);
 Logger.addLogger(this);

 this.layoutConstruct();
 },

 layoutConstruct: function(){
 this._addUserTypeSelectCallback();
 },

 _addUserTypeSelectCallback: function(){
 //resizing if user type select
 var layout = this;
 $('#user-type-student, #user-type-teacher').click(function(){
 setTimeout(function(){
 layout.trigger('windowResize');
 }, 200);
 });
 },

 addComponent: function (componentName, componentClass) {
 var _this = this;
 this.components[componentName] = (_.isFunction(componentClass) ? new componentClass({layout: this}) : componentClass);
 this._kernel.listenTo(this.components[componentName], 'all', function () {
 _this.trigger.apply(_this, arguments);
 });
 },

 getKernel: function(){
 return this._kernel;
 },

 build: function () {
 .each(.values(this.components), function (component) {
 component.load();
 });
 }

 });
});

7c5c1b084fe80f0d580d7a05141059ad8c038a65.js
define([], function(){
 var reg = {};
 return {
 set: function(id, value){
 reg[id] = value;
 },
 get: function(id){
 return reg[id];
 }
 }
});

7149ff900eaf34ad41dd93f274ca35107dfbfb6c.js
/**
 * @license RequireJS domReady 2.0.1 Copyright (c) 2010-2012, The Dojo Foundation All Rights Reserved.
 * Available via the MIT or new BSD license.
 * see: http://github.com/requirejs/domReady for details
 */
/*jslint */
/*global require: false, define: false, requirejs: false,
 window: false, clearInterval: false, document: false,
 self: false, setInterval: false */

define(function () {
 'use strict';

 var isTop, testDiv, scrollIntervalId,
 isBrowser = typeof window !== "undefined" && window.document,
 isPageLoaded = !isBrowser,
 doc = isBrowser ? document : null,
 readyCalls = [];

 function runCallbacks(callbacks) {
 var i;
 for (i = 0; i < callbacks.length; i += 1) {
 callbacks[i](doc);
 }
 }

 function callReady() {
 var callbacks = readyCalls;

 if (isPageLoaded) {
 //Call the DOM ready callbacks
 if (callbacks.length) {
 readyCalls = [];
 runCallbacks(callbacks);
 }
 }
 }

 /**
 * Sets the page as loaded.
 */
 function pageLoaded() {
 if (!isPageLoaded) {
 isPageLoaded = true;
 if (scrollIntervalId) {
 clearInterval(scrollIntervalId);
 }

 callReady();
 }
 }

 if (isBrowser) {
 if (document.addEventListener) {
 //Standards. Hooray! Assumption here that if standards based,
 //it knows about DOMContentLoaded.
 document.addEventListener("DOMContentLoaded", pageLoaded, false);
 window.addEventListener("load", pageLoaded, false);
 } else if (window.attachEvent) {
 window.attachEvent("onload", pageLoaded);

 testDiv = document.createElement('div');
 try {
 isTop = window.frameElement === null;
 } catch (e) {}

 //DOMContentLoaded approximation that uses a doScroll, as found by
 //Diego Perini: http://javascript.nwbox.com/IEContentLoaded/,
 //but modified by other contributors, including jdalton
 if (testDiv.doScroll && isTop && window.external) {
 scrollIntervalId = setInterval(function () {
 try {
 testDiv.doScroll();
 pageLoaded();
 } catch (e) {}
 }, 30);
 }
 }

 //Check if document already complete, and if so, just trigger page load
 //listeners. Latest webkit browsers also use "interactive", and
 //will fire the onDOMContentLoaded before "interactive" but not after
 //entering "interactive" or "complete". More details:
 //http://dev.w3.org/html5/spec/the-end.html#the-end
 //http://stackoverflow.com/questions/3665561/document-readystate-of-interactive-vs-ondomcontentloaded
 //Hmm, this is more complicated on further use, see "firing too early"
 //bug: https://github.com/requirejs/domReady/issues/1
 //so removing the || document.readyState === "interactive" test.
 //There is still a window.onload binding that should get fired if
 //DOMContentLoaded is missed.
 if (document.readyState === "complete") {
 pageLoaded();
 }
 }

 /** START OF PUBLIC API **/

 /**
 * Registers a callback for DOM ready. If DOM is already ready, the
 * callback is called immediately.
 * @param {Function} callback
 */
 function domReady(callback) {
 if (isPageLoaded) {
 callback(doc);
 } else {
 readyCalls.push(callback);
 }
 return domReady;
 }

 domReady.version = '2.0.1';

 /**
 * Loader Plugin API method
 */
 domReady.load = function (name, req, onLoad, config) {
 if (config.isBuild) {
 onLoad(null);
 } else {
 domReady(onLoad);
 }
 };

 /** END OF PUBLIC API **/

 return domReady;
});

1b2438fce715aa7b9e687794664e5b12147a2f11.js
define([
 'modules/core/engines/EngineInterface',
 'modules/core/engines/WomiExerciseEngine',
 'modules/core/engines/CustomLogicExerciseWomi',
 'modules/core/cp_engines/GeogebraEngine',
 'modules/core/cp_engines/DaisyEngine',
 'modules/core/cp_engines/MultibookEngine',
 'modules/core/engines/SwiffyEngine',
 'modules/core/engines/PureHTMLEngine',
 'modules/core/engines/CPEngine',
 'modules/core/engines/Pano2VREngine',
 'modules/core/engines/WomiAttachment',
 'modules/core/engines/GeneratedExerciseEngine',
], function (
 EngineInterface,
 WomiExerciseEngine,
 CustomLogicExerciseWomi,
 GeogebraEngine,
 DaisyEngine,
 MultibookEngine,
 SwiffyEngine,
 PureHTMLEngine,
 CPEngine,
 Pano2VREngine,
 WomiAttachment,
 GeneratedExerciseEngine
) {

 var polyfill = {
 EngineInterface: EngineInterface,
 GeogebraEngine: GeogebraEngine,
 SwiffyEngine: SwiffyEngine,
 Pano2VREngine: PureHTMLEngine,
 GeneratedExerciseEngine: GeneratedExerciseEngine,
 CustomLogicExerciseWomi: CustomLogicExerciseWomi,
 WomiExerciseEngine: WomiExerciseEngine,
 PureHTMLEngine: PureHTMLEngine,
 CPEngine: CPEngine,
 };

 window.epGlobal = window.epGlobal || {};
 epGlobal.common = epGlobal.common || {};
 epGlobal.common.engines = polyfill;

 return {
 'custom_logic_exercise_womi': CustomLogicExerciseWomi,
 "pano2vr_engine": Pano2VREngine,
 "custom_womi": GeneratedExerciseEngine,
 "framed_html": PureHTMLEngine,
 "cp_engine": CPEngine,
 "swiffypattern": SwiffyEngine,
 "createjs_animation": PureHTMLEngine,
 "geogebra": GeogebraEngine,
 "womi_exercise_engine": WomiExerciseEngine,
 "edge_animation": PureHTMLEngine,
 "ge_animation": GeneratedExerciseEngine,
 "pl_generated_excercise_1": GeneratedExerciseEngine,
 "swiffy": SwiffyEngine,
 "daisy_engine": DaisyEngine,
 "multibook": MultibookEngine,
 "womi_attachment": WomiAttachment,
 };

});

17514cedc5c9af26a8688412ed94e0c19aacde94.js
define(['jquery', 'underscore', 'require', 'domReady', 'modules/engines',
 'layout',
 'modules/core/Registry',
 'modules/core/womi/WOMIContainer',
 'modules/core/womi/WOMIContainerBase',
 'modules/core/womi/WOMIImageContainer',
 'modules/core/womi/WOMIFSImageContainer',
 'modules/core/womi/WOMIInteractiveObjectContainer',
 'modules/core/womi/ClonedWOMIContainer',
 'modules/core/womi/WOMIMovieContainer',
 'modules/core/womi/SplashscreenImageContainer',
 'modules/core/womi/WOMIAudioContainer',
 'modules/core/womi/MultipleWOMIContainer',
 'modules/core/womi/WOMIGalleryContainer'
], function ($, _, require, domReady, engines, layout,
 Registry,
 WOMIContainer,
 WOMIContainerBase,
 WOMIImageContainer,
 WOMIFSImageContainer,
 WOMIInteractiveObjectContainer,
 ClonedWOMIContainer,
 WOMIMovieContainer,
 SplashscreenImageContainer,
 WOMIAudioContainer,
 MultipleWOMIContainer,
 WOMIGalleryContainer
) {
 // device_detection, common_base are required by multiple engines

 var objList = [];

 var otherReady = false;

 function loadAllGalleries() {
 $('.womi-gallery').each(function (index, element) {
 objList.push(new WOMIGalleryContainer(element));
 });
 }

 function loadAllWOMI() {

 var rpt = function () {
 if (otherReady) {
 objList = [];
 // player.clearPlayers();
 loadAllGalleries();
 $('.womi-container').each(function (index, element) {
 objList.push(new WOMIContainer(element));
 });
 //
 handleSvg.handleSVGImages();
 clearInterval(intvl);
 }
 $(objList).each(function (index, womi) {
 if (womi.updateWomiMenu) {
 womi.updateWomiMenu();
 }
 });
 };
 var intvl = setInterval(rpt, 100);
 }

 function loadAllWOMI2(handler) {
 objList = [];
 // setTimeout(function(){
 $(handler).find('.womi-container').each(function (index, element) {
 objList.push(new WOMIContainer(element));
 });
 // }, 300);

 handleSvg.handleSVGImages();
 }

 function disposeAllWOMI() {
 objList.forEach(function (entry) {
 entry.dispose();
 });
 }

 domReady(function () {
 var rpt = function () {
 if (otherReady) {
 // loadAllGalleries();

 loadAllWOMI();

 /*
 * We must include handleSVGImages here so to be sure that it is
 * run after all WOMIs have been processed.
 */
 handleSvg.handleSVGImages();
 clearInterval(intvl);
 }
 };
 var intvl = setInterval(rpt, 100);
 });

 function resizeAll() {
 objList.forEach(function (entry) {
 entry.callResize();
 });
 }

 var declareResult = {
 load: loadAllWOMI,
 load2: loadAllWOMI2,
 disposeAll: disposeAllWOMI,
 resizeAll: resizeAll,
 otherReady: function (bool) {
 otherReady = bool
 },
 switchToMobile: function () {
 objList.forEach(function (entry) {
 entry.switchToMobile();
 });
 },

 WOMIContainer: WOMIContainer,
 ClonedWOMIContainer: ClonedWOMIContainer,
 WOMIContainerBase: WOMIContainerBase,
 SplashscreenImageContainer: SplashscreenImageContainer,
 WOMIImageContainer: WOMIImageContainer,
 WOMIFSImageContainer: WOMIFSImageContainer,
 WOMIMovieContainer: WOMIMovieContainer,
 WOMIAudioContainer: WOMIAudioContainer,
 WOMIInteractiveObjectContainer: WOMIInteractiveObjectContainer,
 MultipleWOMIContainer: MultipleWOMIContainer,
 // ClonedMultipleWOMIContainer: ClonedMultipleWOMIContainer,
 WOMIGalleryContainer: WOMIGalleryContainer

 };

 Registry.set('engines', engines);
 Registry.set('womi', declareResult);

 return declareResult;
});

e883a62e09023afc2203c95b77aeddc4788d3f42.js
define([], function () {
 var DICT = {
 'pl': {},
 'en': {
 "Ćwiczenie": "Exercise",
 "Polecenie": "Task",
 "Definicja:": "Definition:",
 "Definicja": "Definition:",
 "Reguła:": "Theorem:",
 "Zadanie": "Task",
 "Doświadczenie": "Experiment",
 "Problem badawczy:": "Research problem:",
 "Hipoteza:": "Hypothesis:",
 "Co będzie potrzebne:": "You will need:",
 "Instrukcja:": "Instruction:",
 "Podsumowanie:": "Summary:",
 "Ilustracja": "Illustration",
 "Aplikacja": "Application",
 "Film": "Film",
 "Nauczysz się:": "You will learn",
 "Zapisz": "Save",
 "Drukuj": "Print",
 "Wyczyść": "Clear",
 "Nowy przykład": "Recreate",
 "Podpowiedź": "Hint",
 "Wskazówka": "Hint",
 "Zapisz odpowiedź": "Save answer",
 "Sprawdź": "Check",
 "Następny": "Next",
 "Poprzedni": "Previous",
 "Licencja": "License",
 "Ilustracja": "Illustration",
 "Aplikacja": "Application",
 "Nagranie wideo": "Video record",
 "Tego się nauczysz:": "You will learn:",
 "Odpowiedź": "Answer",
 "Sprawdź": "Check",
 "Zapisz odpowiedź": "Save the answer",
 "Zapisz stan": "Save the answer",
 "Pokaż odpowiedź": "Show the answer",
 "Ukryj odpowiedź": "Hide the answer",
 "Galeria": "Gallery",
 "Prawda": "True",
 "Fałsz": "False",
 "To zadanie jest rozwiązane niepoprawnie.": "The exercise hasn't been completed correctly.",
 "To zadanie zostało rozwiązane poprawnie.": "The exercise has been completed correctly.",
 'Bardzo dobrze!': 'Correct answer!',
 'Niepoprawnie!': 'Invalid answer!',
 'Musisz wybrać odpowiedź.': 'You have to choose answer.',
 'Odpowiedź częsciowo poprawna.': 'The answer is partly correct.',
 'Ostrzeżenie!': 'Warning!',
 'Ustawienia domyślne': 'Default settings',
 'Nowy przykład': 'New example',
 'Pobierz': 'Download'
 }
 };

 return {
 currentLocale: 'pl',
 fallbackLocale: 'pl',
 setLocale: function (currentLocale) {
 this.currentLocale = currentLocale;
 return this;
 },
 _: function (text, parameters, locale) {

 locale = locale || this.currentLocale;
 var fallbackLocale = this.fallbackLocale;
 var result = text + '';

 if (locale in DICT && text in DICT[locale]) {
 result = DICT[locale][text];
 } else if (fallbackLocale in DICT && text in DICT[fallbackLocale]) {
 result = DICT[fallbackLocale][text];
 }

 if (!Cp.isObject(parameters)) {
 parameters = {};
 }

 var regex = /{([^}]+)}/, matches;

 do {
 matches = result.match(regex);
 if (!matches) {
 break;
 }

 result = result.replace(matches[0], parameters[matches[1]]);
 } while (true);

 return result;
 }
 };
});

446235d650469462cbf701f2db2a8573ad991e97.woff2

15dba60327a1d7f102ae01445386ef57952c724a.js
define(['jquery', 'backbone', 'modules/core/Registry', './WOMIContainerBase'], function ($, Backbone, Registry, Base) {
 var isTouch = true;
 var InteractiveObjectModel = Backbone.Model.extend({});

 var InteractiveObjectContainer = Base.extend({
 containerClass: 'interactive-object-container',
 ENGINES: function (name) {
 return Registry.get('engines')[name];
 },

 render: function () {
 this._mainContainerElement.remove();
 this._mainContainerElement = $('<div>', {'class': 'interactive-object-container'});
 this._mainContainerElement.append(this._engineContainer);
 this.fullyLoaded();
 return this._mainContainerElement;
 },

 _lookForBlocks: function () {
 this._interactiveObject = this._mainContainerElement.children()[0];
 if (this._mainContainerElement.children().length > 1) {
 this._replacementScreen = this._mainContainerElement.children()[1];
 }
 var _this = this;
 this.on('renderDone', function () {
 _this._engineHandler.setRoles(_this.options.roles);
 _this.options.roles.autoplay && _this._engineHandler.trigger('autoplay');
 _this._engineHandler.load();
 });
 },
 getAnyImage: function () {
 return this._replacementScreen;
 },
 _discoverContent: function () {
 if (!this.model) {
 this.model = new InteractiveObjectModel();
 var className = this._interactiveObject.className;
 this.model.set('className', className);
 this.model.set('altText', this._mainContainerElement.data('alt'));
 this.model.set('width', this._mainContainerElement.data('width') || "100%");
 this.model.set('heightRatio', this._mainContainerElement.data('height-ratio'));
 this.model.set('source', "");
 this.model.set('engine', $(this._interactiveObject).data('object-engine'));
 this.model.set('engineVersion', $(this._interactiveObject).data('object-engine-version'));
 this.model.set('manifest', $(this._interactiveObject).data('manifest'));

 this.model.set('source', $(this._interactiveObject).data('object-src'));
 this._src = this.model.get('source');
 }
 if (this._mainContainerElement.find('.generated-engine').length > 0) {
 this._mainContainerElement.find('.generated-engine').remove();
 }
 this._engineContainerTemplate = $('<div />', {
 'class': "generated-engine",
 style: 'width: ' + this.model.get('width') + ";" + 'margin: 0 auto;'
 });
 this._engineContainer = this._engineContainerTemplate.clone();
 if (this.model.get('heightRatio')) {
 this._engineContainer.attr('data-height-ratio', this.model.get('heightRatio'));
 }
 if (this.model.get('width')) {
 this._engineContainer.attr('data-width', this.model.get('width'));
 }
 if (this.model.get('engineVersion')) {
 this._engineContainer.attr('data-version', this.model.get('engineVersion'));
 }

 if (this._replacementScreen) {
 this._engineContainer.append($(this._replacementScreen).clone());
 }
 //this._mainContainerElement.append(this._engineContainer);
 var engineName = this.model.get('engine');

 try {

 this._currentClazz = this.ENGINES(engineName);
 this._engineHandler = new this._currentClazz({
 source: this.model.get('source'),
 destination: this._engineContainer,
 params: this.model.toJSON(),
 parentOptions: this.options
 });

 if (this._engineHandler.hasOwnLoadedRule()) {
 this.fullyLoaded = function () {
 };
 this.listenTo(this._engineHandler, 'fullyLoaded', function () {
 this.trigger('fullyLoaded');
 });
 }
 } catch (err) {
 console.error('Unable to load engine:', engineName);
 console.error(err);
 }

 },
 setRoles: function (roles) {
 this.roles = roles;
 },
 avatarConfig: function () {
 return this._engineHandler.avatarConfig();
 },
 _licenseUrl: function () {
 if (this._src) {
 return Base.prototype._licenseUrl.apply(this);
 } else {
 if (this._engineHandler && this._engineHandler.license) {
 return this._engineHandler.license();
 }
 }
 return {type: 'object', src: {license: 'brak'}}
 },

 load: function () {
 var children = this._engineContainer.children();
 console.log(" WOMIInteractiveObjectContainer load children: ", children);
 if (children.length == 0 || (children.length == 1 && this._replacementScreen)) {
 this._engineHandler.setRoles(this.options.roles);
 this.options.roles.autoplay && this._engineHandler.trigger('autoplay');
 this._engineHandler.load();

 }
 },
 dispose: function () {
 this._engineHandler.dispose();
 },
 enterFS: function () {
 this._engineHandler.enterFS();
 },
 _resize: function () {
 var _this = this;
 if (this._engineHandler._reprocess) {
 return function () {
 _this._engineHandler._reprocess();
 }
 }
 return function () {
 };
 },
 _recalculate: function () {
 if (this._engineHandler.recalculate) {
 this._engineHandler.recalculate();
 }
 },
 getWomiManageButtons: function () {
 return this._engineHandler.getButtons();
 },
 hasFullscreenItem: function () {
 return this._engineHandler.hasFullscreen();

 },
 contextCallback: function () {
 this.hasFullscreenItem = function () {
 return true;
 };
 this.parent.trigger('openContext');
 },
 _scaleElement: function (srcwidth, srcheight) {
 var props = $.fancybox.defaults;
 props.margin = 1;
 props.padding = 1;
 var offset = 2 * props.margin + 2 * props.padding;
 var result = {width: 0, height: 0, fScaleToTargetWidth: true};
 var targetWidth = $(window).width() - offset;
 var targetHeight = $(window).height() - offset;
 var fLetterBox = true;
 if ((srcwidth <= 0) || (srcheight <= 0) || (targetWidth <= 0) || (targetHeight <= 0)) {
 return result;
 }

 // scale to the target width
 var scaleX1 = targetWidth;
 var scaleY1 = (srcheight * targetWidth) / srcwidth;

 // scale to the target height
 var scaleX2 = (srcwidth * targetHeight) / srcheight;
 var scaleY2 = targetHeight;

 // now figure out which one we should use
 var fScaleOnWidth = (scaleX2 > targetWidth);
 if (fScaleOnWidth) {
 fScaleOnWidth = fLetterBox;
 } else {
 fScaleOnWidth = !fLetterBox;
 }

 if (fScaleOnWidth) {
 result.width = Math.floor(scaleX1);
 result.height = Math.floor(scaleY1);
 result.fScaleToTargetWidth = true;
 } else {
 result.width = Math.floor(scaleX2);
 result.height = Math.floor(scaleY2);
 result.fScaleToTargetWidth = false;
 }
 if (targetWidth < result.width) {
 result.width = targetWidth;
 }
 if (targetHeight < result.height) {
 result.height = targetHeight;
 }

 return result;
 },
 closeButtonConfigure: function () {
 $('div.fancybox-overlay').addClass('fullscreen-background');
 // $('div.fancybox-skin').css('background', 'none');
 var fancyBoxClose = $('a.fancybox-close');
 fancyBoxClose.addClass('fullscreen-close-image');
 fancyBoxClose.addClass('hastip');
 fancyBoxClose.attr('title', 'Zamknij');
 fancyBoxClose.tooltipsy({
 alignTo: 'element',
 offset: [-1, 1]
 });
 fancyBoxClose.click(function () {
 $('div.tooltipsy').remove();
 });
 },
 getFSElement: function () {
 var parentDiv = this._mainContainerElement.clone();
 var cloned = parentDiv.find('.generated-engine');
 cloned.css('visibility', 'visible');
 cloned.children().remove();
 if (this._replacementScreen) {
 cloned.append($(this._replacementScreen).clone());
 }
 //set dimensions with ratio
 var elementWithSize = this._engineContainer.find('.proper-element');
 if (elementWithSize.length == 0) {
 elementWithSize = this._engineContainer;
 }

 var src = this.model.get('source');
 if (typeof this.model.get('source') !== 'string') {
 src = $(this.model.get('source')).clone()[0];
 }
 var _this = this;

 function adjustSize(width, height) {
 var dimensions = _this._scaleElement(width, height);
 cloned.width(dimensions.width);
 cloned.height(dimensions.height);
 }

 return {
 element: parentDiv,
 options: {
 scrolling: 'hidden',
 helpers: {
 overlay: {
 locked: isTouch
 }
 }
 },
 afterLoad: function () {
 //$('.fancybox-overlay').css('height', $(window).height());
 var toLoad = new _this._currentClazz({
 source: src,
 destination: cloned,
 params: _this.model.toJSON()
 });

 this.toLoad = toLoad;
 toLoad.setFullScreenMode();
 var size = toLoad.getSize();
 if (size) {
 adjustSize(size.width, size.height);
 }
 _this._engineHandler.enterFS();
 toLoad.load();
 if (!_this.roles.context) {
 //according to new requirements, do not disable in-page womi when FS run
 //_this.dispose();
 //_this.load();
 //_this.enterFS();
 }

 _this.closeButtonConfigure();

 },
 reload: function () {
 this.toLoad.dispose();
 this.afterLoad();
 },
 afterClose: function () {
 _this._engineHandler.closeFS();
 }
 };
 }
 });

 return InteractiveObjectContainer;
});

532443c56e5f14b1d252fd829af3df9ea71277dc.js
define(['jquery',
 'backbone',
 'underscore',
 'modules/core/Registry',
 './WOMIContainerBase',
 './WOMIInteractiveObjectContainer'], function ($, Backbone, _, Registry, Base, WOMIInteractiveObjectContainer) {

 var deviceDetection = require('device_detection');
 //var handleSvg = require('svg_fallback');
 var isTouch = true;

 var readerDefinition = $('#reader-definition');

 readerDefinition = {
 stylesheet: readerDefinition.data('stylesheet'),
 env: readerDefinition.data('environment-type')
 };

 var WOMIImageContainer = Base.extend({
 containerClass: 'image-container',
 SVG_LOADER: '/global/libraries/epo/svg/loader.html',
 MEDIA_MAPPINGS: {
 '480': '(max-width: 480px)',
 '980': '(max-width: 480px) and (-webkit-min-device-pixel-ratio: 1.5),(min-resolution: 144dpi)',
 '1440': ['(max-width: 979px) and (-webkit-min-device-pixel-ratio: 2.0),(min-resolution: 192dpi)', '(min-width: 980px) and (-webkit-min-device-pixel-ratio: 1.5),(min-resolution: 144dpi)'],
 '1920': '(min-width: 980px) and (-webkit-min-device-pixel-ratio: 2.0),(min-resolution: 192dpi)'
 },
 DEFAULT_MEDIA: 980,
 maxHeight: 0.7,
 lensSize: 150,
 _lookForBlocks: function () {
 //this._mainContainerElement = $(this._mainContainerElement[0]);
 var _this = this;
 this._availableResolutions = [];
 this._anyImage = $(this._mainContainerElement.clone());
 $(this._mainContainerElement.find('div[data-resolution]')).each(function (index, element) {
 _this._availableResolutions.push($(element).data('resolution'));
 });
 this._renderDoneRegister();
 },
 _renderDoneRegister: function () {
 this.on('renderDone', function () {
 this._resize()();
 if (!this.hasFullscreenItem()) {
 this._createOverlayFullscreenField();
 }
 });
 },
 _discoverContent: function () {
 this._altText = this._mainContainerElement.data('alt');
 this._width = this._mainContainerElement.data('width') || '100%';
 this._src = this._mainContainerElement.data('src');
 if (this._src.substring(this._src.lastIndexOf('.')) == '.svg') {
 this._isEmbed = true;
 } else {
 this._isEmbed = false;
 }

 },
 _match: function (media) {
 return (window.matchMedia && window.matchMedia(media).matches);
 },
 _buildMediaUrl: function (root, entry) {
 var pattern = /=$/;
 var base = root;
 if (root.search(pattern) == -1) {
 pattern = /\/$/;
 base = base.replace(pattern, "");
 var dotPos = base.lastIndexOf('.');
 if (entry != "" && base.substring(dotPos) != '.svg') {
 return base.substring(0, dotPos) + '-' + entry + base.substring(dotPos).toLowerCase();
 } else {
 return base.substring(0, dotPos) + base.substring(dotPos).toLowerCase();
 }
 }
 return base + entry;
 },
 _selectMedia: function () {
 var _this = this;
 var selectedMedia = this.DEFAULT_MEDIA;
 if ($('.womi-container[data-womi-id="' + _this.options.womiId + '"]').closest('div.full-width').length) {
 selectedMedia = 1920;
 }
 if (_this.options.roles && _this.options.roles.magnifier) {
 selectedMedia = 1920;
 }
 var matched = false;
 this._availableResolutions.forEach(function (entry) {
 var mp = _this.MEDIA_MAPPINGS[entry];
 if(!_.isArray(mp)){
 mp = [mp];
 }
 _.each(mp, function(media){
 if (_this._match(media)) {
 selectedMedia = entry;
 matched = true;
 }
 });

 });
 if (this._availableResolutions.length == 0) {
 selectedMedia = "";
 } else if (this._availableResolutions.length == 1 && !matched) {
 selectedMedia = this._availableResolutions[0];
 }
 return selectedMedia;
 },
 _selectBestWidthSizedMedia: function(){
 var max = Math.max(screen.availHeight, screen.availWidth);
 var closest = {
 entry: this.DEFAULT_MEDIA,
 diff: 1000000000
 };
 this._availableResolutions.forEach(function (entry) {
 var diff = Math.abs(entry - max);
 if(diff < closest.diff) {//} && entry <= max){
 closest.diff = diff;
 closest.entry = entry;
 }
 });
 return closest.entry;
 },
 onrelated: function (relatedObj) {

 },

 fullyLoaded: function(){
 //pass
 },

 maxAvailableMedia: function () {
 var max = _.max(this._availableResolutions);
 return _.isFinite(max) ? max : '';
 },

 minAvailableMedia: function () {
 var min = _.min(this._availableResolutions);
 return _.isFinite(min) ? min : '';
 },

 getWomiManageButtons: function () {
 var _this = this;
 if ((this.roles && this.roles.magnifier)) {
 return [
 {
 name: 'zoomin',
 callback: function () {
 }
 },
 {
 name: 'zoomout',
 callback: function () {
 }
 },
 {
 name: 'reset',
 callback: function () {
 }
 }
];
 }else{
 return null;
 }
 },

 postProcessMenu: function (menu) {

 if ((this.roles && this.roles.magnifier)) {
 $(this._imgElement).panzoom({
 $zoomIn: menu.find('.zoomin'),
 $zoomOut: menu.find('.zoomout'),
 $reset: menu.find('.reset'),
 minScale: 0.4,
 maxScale: 5
 });
 }
 },

 elementAttributes: function(){
 return {
 'class': 'generated-image',
 alt: this.options.alt,
 title: this.options.title,
 'aria-label': this.options.alt
 }
 },

 load: function () {
 var selectedMedia = this._selectMedia();
 var _this = this;
 var tag = (this._isEmbed ? 'div' : 'img');
 if (this._mainContainerElement.find(tag).length > 0 && !this._imgElement) {
 this._mainContainerElement.find(tag).remove();
 }
 if (!this._imgElement || true) {
 this._imgElement = $('<' + tag + '>', this.elementAttributes());
 var url = this._buildMediaUrl(this._src, selectedMedia);
 //this._mainContainerElement.append(this._imgElement);
 if (this._isEmbed) {
 var u = $('base').data('base');
 if (u.lastIndexOf('/') == u.length - 1) {
 u = u.substring(0, u.length - 1);
 }
 u = u + url;
 u = this.SVG_LOADER + '?url=' + u;
 var div = $('<iframe>', {src: u, style: 'width: 100%; height: 100%;border: none; margin: auto; padding: 0'});//'width: 100%; height: 100%;
 this._message = function (e) {
 if (div[0].contentWindow == e.originalEvent.source && e.originalEvent.data.msg == 'svgSize') {
 _this.svgWidth = e.originalEvent.data.width;
 _this.svgHeight = e.originalEvent.data.height;
 //_this.svgX = e.originalEvent.data.x;
 //_this.svgY = e.originalEvent.data.y;

 if (e.originalEvent.data.viewBox) {
 _this.svgViewBox = e.originalEvent.data.viewBox;
 var coordArray = _this.svgViewBox.split(" ");
 if (coordArray.length == 4) {
 _this.svgViewBoxWidth = coordArray[2];
 _this.svgViewBoxHeight = coordArray[3];
 }

 }

 _this._loaderWindow = e.originalEvent.source;
 _this._resize()();
 }
 };

 $(window).on('message', this._message);
 this._imgElement.append(div);
 this._imgElement.css('margin', '0 auto');
 } else {
 this._imgElement.load(function(){
 _this.trigger('fullyLoaded');
 });
 this._imgElement.attr('src', url);
 }

 this._mainContainerElement.append(this._imgElement);
 if (this.options.related) {
 var related = this.options.related;
 if (related.selected.object._audioId) {
// require(['reader.api'], function (ReaderApi) {
// var readerApi = new ReaderApi(require, true);
// _this._relatedAudio = readerApi.bindAudio(_this._imgElement, related.selected.object._audioId);
// _this.onrelated(_this._relatedAudio);
// });

 }
 }

 //this._resize()();
 //$(window).on('resize', this._resize());
 }

 },
 getAnyImage: function () {
 return this._anyImage;
 },
 _createOverlayFullscreenField: function () {
 if (this._isFS || this._isSplash) {
 return;
 }
 try {
 var _this = this;
 var imageContainer = this._mainContainerElement;
 imageContainer.css({
 position: 'relative'
 });
 imageContainer.each(function (index, element) {
 if ($(element).find('.generated-image')) {
 if ($(element).find('.generated-image').length > 0) {
 //var parentClass = $(element).parent().attr('class');
 //console.log("Parent class: "+ parentClass);
 var fullScreenImgContainer = $('<div>', {'class': 'fullscreen-image-container'});

 var fullScreenImage = $('<button>', {'class': 'fullscreen-image', 'title': 'Widok pełnoekranowy'});
 //$(element).append(fullScreenImgContainer);
 //$($(element).find('.generated-image')).wrap(fullScreenImgContainer);
 $(element).find('.generated-image').after(fullScreenImgContainer);
 fullScreenImgContainer.append($(element).find('.generated-image'));
 //_this._mainContainerElement.append(fullScreenImgContainer);
 //fullScreenImgContainer.append(element);
 fullScreenImgContainer.hover(
 function () {
 //fullScreenImgContainer.css('opacity', '1');
 fullScreenImage.css('opacity', '1');
 },
 function () {
 //fullScreenImgContainer.css('opacity', '0.8');
 fullScreenImage.css('opacity', '0');
 }
);
 fullScreenImgContainer.append(fullScreenImage);
 fullScreenImgContainer.click(function () {
 _this._fullScreenMode();
 });
 }
 }
 });
 } catch (err) {
 console.log(err);
 }
 },
 _fullScreenMode: function () {
 var _this = this;
 var fsElement = _this.getFSElement();
 if (fsElement != null) {
 $.fancybox.open(fsElement.element, $.extend({
 loop: false,
 margin: 1,
 padding: 1,
 scrolling: 'no',
 scrollOutside: false,
 beforeLoad: function () {
 },
 afterShow: function () {
 if (fsElement.afterLoad && !fsElement.loaded) {
 fsElement.afterLoad();
 }
 //$('.fancybox-inner, .fancybox-wrap').css('overflow', 'hidden');
 $('body').css('overflow', 'hidden');
 },
 onUpdate: function () {
 if (fsElement.loaded) {
 fsElement.loaded = false;
 $(".fancybox-overlay").on("remove", function () {
 setTimeout(function () {
 _this._fullScreenMode();
 }, 300);
 });
 $.fancybox.close(true);
 } else {
 fsElement.loaded = true;
 }
 },
 afterClose: function () {
 $('div.tooltipsy').remove();
 $('body').css('overflow', '');
 },
 helpers: {
 overlay: {
 locked: isTouch
 }
 }
 }, fsElement.options));
 }
 return false;
 },
 hasFullscreenItem: function () {
 if (this._isEmbed || (this.roles && this.roles.zoomable) || (this.roles && this.roles.magnifier)) {
 return true;
 }
 return false;
 },
 hasFunctionality: function () {
 return (this._isEmbed || (this.roles && this.roles.zoomable) || (this.roles && this.roles.magnifier));
 },

 hasButtons: function () {
 return ((this.roles && this.roles.magnifier));
 },
 contextCallback: function () {
 this._fullScreenMode();
 },

 getUrl: function () {
 return this._buildMediaUrl(this._src, this._selectMedia());
 },
 getThumbUrl: function () {
 return this._buildMediaUrl(this._src, this.minAvailableMedia());
 },
 getBannerProps: function() {
 var w = this._selectBestWidthSizedMedia();
 return {
 width: w,
 url: this._buildMediaUrl(this._src, w)
 }
 },
 dispose: function () {
 if (this._imgElement != null) {
 this._imgElement.remove();
 this._imgElement = null;
 //$(window).off('resize', this._resize());
 if (this._message) {
 $(window).off('message', this._message);
 }
 }
 },
 getFSElement: function () {
 var _this = this;
 var selectedMedia = this._selectMedia();
 var element = this._buildMediaUrl(this._src, (deviceDetection.isMobile ? selectedMedia : this.maxAvailableMedia()));
 var options = {
 fitToView: true,
 aspectRatio: true,
 type: 'image',
 scrolling: 'no'
 };
 var roles = this.roles;
 var lens = this.lensSize;
 var after = function () {
 if ((roles && roles.zoomable)) {
 $('.fancybox-image').imageLens({lensSize: lens, lensCss: 'over-fancybox'});
 }
 _this.closeButtonConfigure();
 };
 if (this._isEmbed) {
 element = $('<div>', {'class': 'klassjan'});//this._mainContainerElement.clone();
 //element.html('');
 var cln = WOMIImageContainer.extend({ _lookForBlocks: function () {
 }, _discoverContent: function () {
 }});
 var img = new cln({el: $('<div>'), options: this.options});
 img = _.extend({_availableResolutions: this._availableResolutions,
 _altText: this._altText,
 _src: this._src,
 _width: this._width,
 _isEmbed: this._isEmbed}, img);
 img.svgWidth = null;
 img.svgHeight = null;
 img._loaderWindow = null;
 //img.setRoles(this.roles);
 img._scaleElement = WOMIInteractiveObjectContainer.prototype._scaleElement;
 var dimensions = img._scaleElement($(window).width(), $(window).height());
 element.width(dimensions.width);
 element.height(dimensions.height);
 img._isFS = true;
 options = {};
 after = function () {
 element.append(img.render());
 img.trigger('renderDone');
 _this.closeButtonConfigure();
 }
 }
 return {
 element: element,
 options: options,
 afterLoad: function () {
 after();
 }
 };
 },
 _calcSvgDimensions: function (d) {
 var desiredWidth = this.svgWidth || d.maxWidth;
 var desiredHeight = this.svgHeight || d.maxHeight;
 var ratio = desiredHeight / desiredWidth;
 var dimensions = {
 width: d.containerWidth,
 height: d.containerWidth * ratio
 };

 var maxHeight = d.maxHeight;
 if (this._isFS) {
 maxHeight = $(window).height();
 }

 if (dimensions.height > maxHeight) {
 var scale = maxHeight / dimensions.height;
 dimensions.width *= scale;
 dimensions.height *= scale;
 }
 return dimensions;
 },
 _setFullScreenImageWidth: function (imgElement) {
 if (imgElement.parents('.fullscreen-image-container')) {
 if (imgElement.parents('.fullscreen-image-container').length > 0) {
 //imgElement.parents('.fullscreen-image-container').width(imgElement.width());
 }
 }
 },
 _calcDimensions: function () {
 var _this = this;
 var percentW = parseFloat(_this._width);
 var tile = _this._mainContainerElement.closest('.tile');
 var height = _this.maxHeight * $(window).height();
 if ($('.science-module').length>0) {

 // console.log("science-module detected");
 if (_this._isFirstInScienceModule == undefined) {
 if ($('.pagination-page').length>0) {
 if (_this._mainContainerElement.parents('.pagination-page:first-of-type').length>0) {
 height = 'none'; // image on first module page has full height regardless the window size
 _this._isFirstInScienceModule = true;
 } else {
 _this._isFirstInScienceModule = false;
 }
 } else {
 if (_this._mainContainerElement.parents('.section.level_1:first-of-type').length>0) {
 height = 'none'; // the same as above without pages (first load or plain module)
 _this._isFirstInScienceModule = true;
 } else {
 _this._isFirstInScienceModule = false;
 }
 }
 } else {
 if (_this._isFirstInScienceModule) {
 height = 'none';
 }
 }

 }

 if (_this._isFS || _this.forceContainerHeight) {

 height = _this._mainContainerElement.height()
 } else if (tile.length > 0) {
 if (!tile.hasClass('anchor-padding')) {
 height = tile.height() * _this.maxHeight;
 }
 //_this._mainContainerElement.closest('.womi-container').find('.title').hide();
 } else if (tile.length == 0) {
 //_this._mainContainerElement.closest('.womi-container').find('.title').show();
 }

 var dimensions = {maxHeight: height,
 maxWidth: (_this._mainContainerElement.width() * (percentW / 100.0)) || '100%' };
 return dimensions;
 },

 _resize: function () {
 var _this = this;
 if (!this._resizeHandler) {
 this._resizeHandler = function () {
 var dimensions = _this._calcDimensions();
 //$(_this._imgElement).
 if (_this._isEmbed) {

 if (_this.svgWidth) {
 dimensions.containerWidth = _this._mainContainerElement.width() || dimensions.maxWidth || '100%';

 var d = _this._calcSvgDimensions(dimensions);

 $(_this._imgElement).css({width: d.width, height: d.height});
 try {
 $(_this._imgElement).find('iframe')[0].contentWindow.postMessage({msg: 'svgIframeSize', width: d.width, height: d.height, haveSize: true, alt: _this._altText}, '*');
 } catch (err) {
 console.log($(_this._imgElement).find('iframe')[0]);
 }
 } else {
 $(_this._imgElement).find('iframe')[0].contentWindow.postMessage({msg: 'svgIframeSize', haveSize: false, alt: _this._altText}, '*');
 $(_this._imgElement).css({width: dimensions.maxWidth, height: dimensions.maxHeight});
 }
 } else {

 if ((_this.roles && _this.roles.zoomable)) {
 $(_this._imgElement).css(dimensions);
 $(_this._imgElement).imageLens('delete');
 $(_this._imgElement).imageLens({lensSize: _this.lensSize, lensCss: 'lens-style',
 imageSrc: _this._buildMediaUrl(_this._src, _this.maxAvailableMedia())});
 } else {
 $(_this._imgElement).css(dimensions);
 }
 }
 _this._setFullScreenImageWidth($(_this._imgElement));
 }
 }
 return this._resizeHandler;
 }
 });

 return WOMIImageContainer;

});

2b9c1ac7936d49cc09926793b0e697f752cea917.woff2

fe5a059738c9ed80ebd8df3e3102f519ddd1fd4b.js
define(['./WOMIImageContainer'], function (WOMIImageContainer) {
 return WOMIImageContainer.extend({
 MEDIA_MAPPINGS: {
 '1920': '(min-width: 100px)'
 },
 DEFAULT_MEDIA: 1920
 });
});

cover.jpg

606815fa97d42633659ded91e398cb6ac58cf4ee.woff2

096b90d6cfac4008e55577a73dbb9219e4c049cb.js
/*!
 * fancyBox - jQuery Plugin
 * version: 2.1.5 (Fri, 14 Jun 2013)
 * requires jQuery v1.6 or later
 *
 * Examples at http://fancyapps.com/fancybox/
 * License: www.fancyapps.com/fancybox/#license
 *
 * Copyright 2012 Janis Skarnelis - janis@fancyapps.com
 *
 */

;(function (window, document, $, undefined) {
	"use strict";

	var H = $("html"),
		W = $(window),
		D = $(document),
		F = $.fancybox = function () {
			F.open.apply(this, arguments);
		},
		IE = navigator.userAgent.match(/msie/i),
		didUpdate	= null,
		isTouch		= document.createTouch !== undefined,

		isQuery	= function(obj) {
			return obj && obj.hasOwnProperty && obj instanceof $;
		},
		isString = function(str) {
			return str && $.type(str) === "string";
		},
		isPercentage = function(str) {
			return isString(str) && str.indexOf('%') > 0;
		},
		isScrollable = function(el) {
			return (el && !(el.style.overflow && el.style.overflow === 'hidden') && ((el.clientWidth && el.scrollWidth > el.clientWidth) || (el.clientHeight && el.scrollHeight > el.clientHeight)));
		},
		getScalar = function(orig, dim) {
			var value = parseInt(orig, 10) || 0;

			if (dim && isPercentage(orig)) {
				value = F.getViewport()[dim] / 100 * value;
			}

			return Math.ceil(value);
		},
		getValue = function(value, dim) {
			return getScalar(value, dim) + 'px';
		};

	$.extend(F, {
		// The current version of fancyBox
		version: '2.1.5',

		defaults: {
			padding : 15,
			margin : 20,

			width : 800,
			height : 600,
			minWidth : 100,
			minHeight : 100,
			maxWidth : 9999,
			maxHeight : 9999,
			pixelRatio: 1, // Set to 2 for retina display support

			autoSize : true,
			autoHeight : false,
			autoWidth : false,

			autoResize : true,
			autoCenter : !isTouch,
			fitToView : true,
			aspectRatio : false,
			topRatio : 0.5,
			leftRatio : 0.5,

			scrolling : 'auto', // 'auto', 'yes' or 'no'
			wrapCSS : '',

			arrows : true,
			closeBtn : true,
			closeClick : false,
			nextClick : false,
			mouseWheel : true,
			autoPlay : false,
			playSpeed : 3000,
			preload : 3,
			modal : false,
			loop : true,

			ajax : {
				dataType : 'html',
				headers : { 'X-fancyBox': true }
			},
			iframe : {
				scrolling : 'auto',
				preload : true
			},
			swf : {
				wmode: 'transparent',
				allowfullscreen : 'true',
				allowscriptaccess : 'always'
			},

			keys : {
				next : {
					13 : 'left', // enter
					34 : 'up', // page down
					39 : 'left', // right arrow
					40 : 'up' // down arrow
				},
				prev : {
					8 : 'right', // backspace
					33 : 'down', // page up
					37 : 'right', // left arrow
					38 : 'down' // up arrow
				},
				close : [27], // escape key
				play : [32], // space - start/stop slideshow
				toggle : [70] // letter "f" - toggle fullscreen
			},

			direction : {
				next : 'left',
				prev : 'right'
			},

			scrollOutside : true,

			// Override some properties
			index : 0,
			type : null,
			href : null,
			content : null,
			title : null,

			// HTML templates
			tpl: {
				wrap : '<div class="fancybox-wrap" tabIndex="-1"><div class="fancybox-skin"><div class="fancybox-outer"><div class="fancybox-inner"></div></div></div></div>',
				image : '',
				iframe : '<iframe id="fancybox-frame{rnd}" name="fancybox-frame{rnd}" class="fancybox-iframe" frameborder="0" vspace="0" hspace="0" webkitAllowFullScreen mozallowfullscreen allowFullScreen' + (IE ? ' allowtransparency="true"' : '') + '></iframe>',
				error : '<p class="fancybox-error">Zasób nie może być załadowany.
Wystąpił błąd lub funkcja jest nieaktywna.</p>',
				closeBtn : '',
				next : '',
				prev : ''
			},

			// Properties for each animation type
			// Opening fancyBox
			openEffect : 'fade', // 'elastic', 'fade' or 'none'
			openSpeed : 250,
			openEasing : 'swing',
			openOpacity : true,
			openMethod : 'zoomIn',

			// Closing fancyBox
			closeEffect : 'fade', // 'elastic', 'fade' or 'none'
			closeSpeed : 250,
			closeEasing : 'swing',
			closeOpacity : true,
			closeMethod : 'zoomOut',

			// Changing next gallery item
			nextEffect : 'elastic', // 'elastic', 'fade' or 'none'
			nextSpeed : 250,
			nextEasing : 'swing',
			nextMethod : 'changeIn',

			// Changing previous gallery item
			prevEffect : 'elastic', // 'elastic', 'fade' or 'none'
			prevSpeed : 250,
			prevEasing : 'swing',
			prevMethod : 'changeOut',

			// Enable default helpers
			helpers : {
				overlay : true,
				title : true
			},

			// Callbacks
			onCancel : $.noop, // If canceling
			beforeLoad : $.noop, // Before loading
			afterLoad : $.noop, // After loading
			beforeShow : $.noop, // Before changing in current item
			afterShow : $.noop, // After opening
			beforeChange : $.noop, // Before changing gallery item
			beforeClose : $.noop, // Before closing
			afterClose : $.noop // After closing
		},

		//Current state
		group : {}, // Selected group
		opts : {}, // Group options
		previous : null, // Previous element
		coming : null, // Element being loaded
		current : null, // Currently loaded element
		isActive : false, // Is activated
		isOpen : false, // Is currently open
		isOpened : false, // Have been fully opened at least once

		wrap : null,
		skin : null,
		outer : null,
		inner : null,

		player : {
			timer : null,
			isActive : false
		},

		// Loaders
		ajaxLoad : null,
		imgPreload : null,

		// Some collections
		transitions : {},
		helpers : {},

		/*
		 *	Static methods
		 */

		open: function (group, opts) {
			if (!group) {
				return;
			}

			if (!$.isPlainObject(opts)) {
				opts = {};
			}

			// Close if already active
			if (false === F.close(true)) {
				return;
			}

			// Normalize group
			if (!$.isArray(group)) {
				group = isQuery(group) ? $(group).get() : [group];
			}

			// Recheck if the type of each element is `object` and set content type (image, ajax, etc)
			$.each(group, function(i, element) {
				var obj = {},
					href,
					title,
					content,
					type,
					rez,
					hrefParts,
					selector;

				if ($.type(element) === "object") {
					// Check if is DOM element
					if (element.nodeType) {
						element = $(element);
					}

					if (isQuery(element)) {
						obj = {
							href : element.data('fancybox-href') || element.attr('href'),
							title : $('<div/>').text(element.data('fancybox-title') || element.attr('title')).html(),
							isDom : true,
							element : element
						};

						if ($.metadata) {
							$.extend(true, obj, element.metadata());
						}

					} else {
						obj = element;
					}
				}

				href = opts.href || obj.href || (isString(element) ? element : null);
				title = opts.title !== undefined ? opts.title : obj.title || '';

				content = opts.content || obj.content;
				type = content ? 'html' : (opts.type || obj.type);

				if (!type && obj.isDom) {
					type = element.data('fancybox-type');

					if (!type) {
						rez = element.prop('class').match(/fancybox\.(\w+)/);
						type = rez ? rez[1] : null;
					}
				}

				if (isString(href)) {
					// Try to guess the content type
					if (!type) {
						if (F.isImage(href)) {
							type = 'image';

						} else if (F.isSWF(href)) {
							type = 'swf';

						} else if (href.charAt(0) === '#') {
							type = 'inline';

						} else if (isString(element)) {
							type = 'html';
							content = element;
						}
					}

					// Split url into two pieces with source url and content selector, e.g,
					// "/mypage.html #my_id" will load "/mypage.html" and display element having id "my_id"
					if (type === 'ajax') {
						hrefParts = href.split(/\s+/, 2);
						href = hrefParts.shift();
						selector = hrefParts.shift();
					}
				}

				if (!content) {
					if (type === 'inline') {
						if (href) {
							content = $(isString(href) ? href.replace(/.*(?=#[^\s]+$)/, '') : href); //strip for ie7

						} else if (obj.isDom) {
							content = element;
						}

					} else if (type === 'html') {
						content = href;

					} else if (!type && !href && obj.isDom) {
						type = 'inline';
						content = element;
					}
				}

				$.extend(obj, {
					href : href,
					type : type,
					content : content,
					title : title,
					selector : selector
				});

				group[i] = obj;
			});

			// Extend the defaults
			F.opts = $.extend(true, {}, F.defaults, opts);

			// All options are merged recursive except keys
			if (opts.keys !== undefined) {
				F.opts.keys = opts.keys ? $.extend({}, F.defaults.keys, opts.keys) : false;
			}

			F.group = group;

			return F._start(F.opts.index);
		},

		// Cancel image loading or abort ajax request
		cancel: function () {
			var coming = F.coming;

			if (coming && false === F.trigger('onCancel')) {
				return;
			}

			F.hideLoading();

			if (!coming) {
				return;
			}

			if (F.ajaxLoad) {
				F.ajaxLoad.abort();
			}

			F.ajaxLoad = null;

			if (F.imgPreload) {
				F.imgPreload.onload = F.imgPreload.onerror = null;
			}

			if (coming.wrap) {
				coming.wrap.stop(true, true).trigger('onReset').remove();
			}

			F.coming = null;

			// If the first item has been canceled, then clear everything
			if (!F.current) {
				F._afterZoomOut(coming);
			}
		},

		// Start closing animation if is open; remove immediately if opening/closing
		close: function (event) {
			F.cancel();

			if (false === F.trigger('beforeClose')) {
				return;
			}

			F.unbindEvents();

			if (!F.isActive) {
				return;
			}

			if (!F.isOpen || event === true) {
				$('.fancybox-wrap').stop(true).trigger('onReset').remove();

				F._afterZoomOut();

			} else {
				F.isOpen = F.isOpened = false;
				F.isClosing = true;

				$('.fancybox-item, .fancybox-nav').remove();

				F.wrap.stop(true, true).removeClass('fancybox-opened');

				F.transitions[F.current.closeMethod]();
			}
		},

		// Manage slideshow:
		// $.fancybox.play(); - toggle slideshow
		// $.fancybox.play(true); - start
		// $.fancybox.play(false); - stop
		play: function (action) {
			var clear = function () {
					clearTimeout(F.player.timer);
				},
				set = function () {
					clear();

					if (F.current && F.player.isActive) {
						F.player.timer = setTimeout(F.next, F.current.playSpeed);
					}
				},
				stop = function () {
					clear();

					D.unbind('.player');

					F.player.isActive = false;

					F.trigger('onPlayEnd');
				},
				start = function () {
					if (F.current && (F.current.loop || F.current.index < F.group.length - 1)) {
						F.player.isActive = true;

						D.bind({
							'onCancel.player beforeClose.player' : stop,
							'onUpdate.player' : set,
							'beforeLoad.player' : clear
						});

						set();

						F.trigger('onPlayStart');
					}
				};

			if (action === true || (!F.player.isActive && action !== false)) {
				start();
			} else {
				stop();
			}
		},

		// Navigate to next gallery item
		next: function (direction) {
			var current = F.current;

			if (current) {
				if (!isString(direction)) {
					direction = current.direction.next;
				}

				F.jumpto(current.index + 1, direction, 'next');
			}
		},

		// Navigate to previous gallery item
		prev: function (direction) {
			var current = F.current;

			if (current) {
				if (!isString(direction)) {
					direction = current.direction.prev;
				}

				F.jumpto(current.index - 1, direction, 'prev');
			}
		},

		// Navigate to gallery item by index
		jumpto: function (index, direction, router) {
			var current = F.current;

			if (!current) {
				return;
			}

			index = getScalar(index);

			F.direction = direction || current.direction[(index >= current.index ? 'next' : 'prev')];
			F.router = router || 'jumpto';

			if (current.loop) {
				if (index < 0) {
					index = current.group.length + (index % current.group.length);
				}

				index = index % current.group.length;
			}

			if (current.group[index] !== undefined) {
				F.cancel();

				F._start(index);
			}
		},

		// Center inside viewport and toggle position type to fixed or absolute if needed
		reposition: function (e, onlyAbsolute) {
			var current = F.current,
				wrap = current ? current.wrap : null,
				pos;

			if (wrap) {
				pos = F._getPosition(onlyAbsolute);

				if (e && e.type === 'scroll') {
					delete pos.position;

					wrap.stop(true, true).animate(pos, 200);

				} else {
					wrap.css(pos);

					current.pos = $.extend({}, current.dim, pos);
				}
			}
		},

		update: function (e) {
			var type = (e && e.originalEvent && e.originalEvent.type),
				anyway = !type || type === 'orientationchange';

			if (anyway) {
				clearTimeout(didUpdate);

				didUpdate = null;
			}

			if (!F.isOpen || didUpdate) {
				return;
			}

			didUpdate = setTimeout(function() {
				var current = F.current;

				if (!current || F.isClosing) {
					return;
				}

				F.wrap.removeClass('fancybox-tmp');

				if (anyway || type === 'load' || (type === 'resize' && current.autoResize)) {
					F._setDimension();
				}

				if (!(type === 'scroll' && current.canShrink)) {
					F.reposition(e);
				}

				F.trigger('onUpdate');

				didUpdate = null;

			}, (anyway && !isTouch ? 0 : 300));
		},

		// Shrink content to fit inside viewport or restore if resized
		toggle: function (action) {
			if (F.isOpen) {
				F.current.fitToView = $.type(action) === "boolean" ? action : !F.current.fitToView;

				// Help browser to restore document dimensions
				if (isTouch) {
					F.wrap.removeAttr('style').addClass('fancybox-tmp');

					F.trigger('onUpdate');
				}

				F.update();
			}
		},

		hideLoading: function () {
			D.unbind('.loading');

			$('#fancybox-loading').remove();
		},

		showLoading: function () {
			var el, viewport;

			F.hideLoading();

			el = $('<div id="fancybox-loading"><div></div></div>').click(F.cancel).appendTo('body');

			// If user will press the escape-button, the request will be canceled
			D.bind('keydown.loading', function(e) {
				if ((e.which || e.keyCode) === 27) {
					e.preventDefault();

					F.cancel();
				}
			});

			if (!F.defaults.fixed) {
				viewport = F.getViewport();

				el.css({
					position : 'absolute',
					top : (viewport.h * 0.5) + viewport.y,
					left : (viewport.w * 0.5) + viewport.x
				});
			}

			F.trigger('onLoading');
		},

		getViewport: function () {
			var locked = (F.current && F.current.locked) || false,
				rez = {
					x: W.scrollLeft(),
					y: W.scrollTop()
				};

			if (locked && locked.length) {
				rez.w = locked[0].clientWidth;
				rez.h = locked[0].clientHeight;

			} else {
				// See http://bugs.jquery.com/ticket/6724
				rez.w = isTouch && window.innerWidth ? window.innerWidth : W.width();
				rez.h = isTouch && window.innerHeight ? window.innerHeight : W.height();
			}

			return rez;
		},

		// Unbind the keyboard / clicking actions
		unbindEvents: function () {
			if (F.wrap && isQuery(F.wrap)) {
				F.wrap.unbind('.fb');
			}

			D.unbind('.fb');
			W.unbind('.fb');
		},

		bindEvents: function () {
			var current = F.current,
				keys;

			if (!current) {
				return;
			}

			// Changing document height on iOS devices triggers a 'resize' event,
			// that can change document height... repeating infinitely
			W.bind('orientationchange.fb' + (isTouch ? '' : ' resize.fb') + (current.autoCenter && !current.locked ? ' scroll.fb' : ''), F.update);

			keys = current.keys;

			if (keys) {
				D.bind('keydown.fb', function (e) {
					var code = e.which || e.keyCode,
						target = e.target || e.srcElement;

					// Skip esc key if loading, because showLoading will cancel preloading
					if (code === 27 && F.coming) {
						return false;
					}

					// Ignore key combinations and key events within form elements
					if (!e.ctrlKey && !e.altKey && !e.shiftKey && !e.metaKey && !(target && (target.type || $(target).is('[contenteditable]')))) {
						$.each(keys, function(i, val) {
							if (current.group.length > 1 && val[code] !== undefined) {
								F[i](val[code]);

								e.preventDefault();
								return false;
							}

							if ($.inArray(code, val) > -1) {
								F[i] ();

								e.preventDefault();
								return false;
							}
						});
					}
				});
			}

			if ($.fn.mousewheel && current.mouseWheel) {
				F.wrap.bind('mousewheel.fb', function (e, delta, deltaX, deltaY) {
					var target = e.target || null,
						parent = $(target),
						canScroll = false;

					while (parent.length) {
						if (canScroll || parent.is('.fancybox-skin') || parent.is('.fancybox-wrap')) {
							break;
						}

						canScroll = isScrollable(parent[0]);
						parent = $(parent).parent();
					}

					if (delta !== 0 && !canScroll) {
						if (F.group.length > 1 && !current.canShrink) {
							if (deltaY > 0 || deltaX > 0) {
								F.prev(deltaY > 0 ? 'down' : 'left');

							} else if (deltaY < 0 || deltaX < 0) {
								F.next(deltaY < 0 ? 'up' : 'right');
							}

							e.preventDefault();
						}
					}
				});
			}
		},

		trigger: function (event, o) {
			var ret, obj = o || F.coming || F.current;

			if (obj) {
				if ($.isFunction(obj[event])) {
					ret = obj[event].apply(obj, Array.prototype.slice.call(arguments, 1));
				}

				if (ret === false) {
					return false;
				}

				if (obj.helpers) {
					$.each(obj.helpers, function (helper, opts) {
						if (opts && F.helpers[helper] && $.isFunction(F.helpers[helper][event])) {
							F.helpers[helper][event]($.extend(true, {}, F.helpers[helper].defaults, opts), obj);
						}
					});
				}
			}

			D.trigger(event);
		},

		isImage: function (str) {
			return isString(str) && str.match(/(^data:image\/.*,)|(\.(jp(e|g|eg)|gif|png|bmp|webp|svg)((\?|#).*)?$)/i);
		},

		isSWF: function (str) {
			return isString(str) && str.match(/\.(swf)((\?|#).*)?$/i);
		},

		_start: function (index) {
			var coming = {},
				obj,
				href,
				type,
				margin,
				padding;

			index = getScalar(index);
			obj = F.group[index] || null;

			if (!obj) {
				return false;
			}

			coming = $.extend(true, {}, F.opts, obj);

			// Convert margin and padding properties to array - top, right, bottom, left
			margin = coming.margin;
			padding = coming.padding;

			if ($.type(margin) === 'number') {
				coming.margin = [margin, margin, margin, margin];
			}

			if ($.type(padding) === 'number') {
				coming.padding = [padding, padding, padding, padding];
			}

			// 'modal' propery is just a shortcut
			if (coming.modal) {
				$.extend(true, coming, {
					closeBtn : false,
					closeClick : false,
					nextClick : false,
					arrows : false,
					mouseWheel : false,
					keys : null,
					helpers: {
						overlay : {
							closeClick : false
						}
					}
				});
			}

			// 'autoSize' property is a shortcut, too
			if (coming.autoSize) {
				coming.autoWidth = coming.autoHeight = true;
			}

			if (coming.width === 'auto') {
				coming.autoWidth = true;
			}

			if (coming.height === 'auto') {
				coming.autoHeight = true;
			}

			/*
			 * Add reference to the group, so it`s possible to access from callbacks, example:
			 * afterLoad : function() {
			 * this.title = 'Image ' + (this.index + 1) + ' of ' + this.group.length + (this.title ? ' - ' + this.title : '');
			 * }
			 */

			coming.group = F.group;
			coming.index = index;

			// Give a chance for callback or helpers to update coming item (type, title, etc)
			F.coming = coming;

			if (false === F.trigger('beforeLoad')) {
				F.coming = null;

				return;
			}

			type = coming.type;
			href = coming.href;

			if (!type) {
				F.coming = null;

				//If we can not determine content type then drop silently or display next/prev item if looping through gallery
				if (F.current && F.router && F.router !== 'jumpto') {
					F.current.index = index;

					return F[F.router](F.direction);
				}

				return false;
			}

			F.isActive = true;

			if (type === 'image' || type === 'swf') {
				coming.autoHeight = coming.autoWidth = false;
				coming.scrolling = 'visible';
			}

			if (type === 'image') {
				coming.aspectRatio = true;
			}

			if (type === 'iframe' && isTouch) {
				coming.scrolling = 'scroll';
			}

			// Build the neccessary markup
			coming.wrap = $(coming.tpl.wrap).addClass('fancybox-' + (isTouch ? 'mobile' : 'desktop') + ' fancybox-type-' + type + ' fancybox-tmp ' + coming.wrapCSS).appendTo(coming.parent || 'body');

			$.extend(coming, {
				skin : $('.fancybox-skin', coming.wrap),
				outer : $('.fancybox-outer', coming.wrap),
				inner : $('.fancybox-inner', coming.wrap)
			});

			$.each(["Top", "Right", "Bottom", "Left"], function(i, v) {
				coming.skin.css('padding' + v, getValue(coming.padding[i]));
			});

			F.trigger('onReady');

			// Check before try to load; 'inline' and 'html' types need content, others - href
			if (type === 'inline' || type === 'html') {
				if (!coming.content || !coming.content.length) {
					return F._error('content');
				}

			} else if (!href) {
				return F._error('href');
			}

			if (type === 'image') {
				F._loadImage();

			} else if (type === 'ajax') {
				F._loadAjax();

			} else if (type === 'iframe') {
				F._loadIframe();

			} else {
				F._afterLoad();
			}
		},

		_error: function (type) {
			$.extend(F.coming, {
				type : 'html',
				autoWidth : true,
				autoHeight : true,
				minWidth : 0,
				minHeight : 0,
				scrolling : 'no',
				hasError : type,
				content : F.coming.tpl.error
			});

			F._afterLoad();
		},

		_loadImage: function () {
			// Reset preload image so it is later possible to check "complete" property
			var img = F.imgPreload = new Image();

			img.onload = function () {
				this.onload = this.onerror = null;

				F.coming.width = this.width / F.opts.pixelRatio;
				F.coming.height = this.height / F.opts.pixelRatio;

				F._afterLoad();
			};

			img.onerror = function () {
				this.onload = this.onerror = null;

				F._error('image');
			};

			img.src = F.coming.href;

			if (img.complete !== true) {
				F.showLoading();
			}
		},

		_loadAjax: function () {
			var coming = F.coming;

			F.showLoading();

			F.ajaxLoad = $.ajax($.extend({}, coming.ajax, {
				url: coming.href,
				error: function (jqXHR, textStatus) {
					if (F.coming && textStatus !== 'abort') {
						F._error('ajax', jqXHR);

					} else {
						F.hideLoading();
					}
				},
				success: function (data, textStatus) {
					if (textStatus === 'success') {
						coming.content = data;

						F._afterLoad();
					}
				}
			}));
		},

		_loadIframe: function() {
			var coming = F.coming,
				iframe = $(coming.tpl.iframe.replace(/\{rnd\}/g, new Date().getTime()))
					.attr('scrolling', isTouch ? 'auto' : coming.iframe.scrolling)
					.attr('src', coming.href);

			// This helps IE
			$(coming.wrap).bind('onReset', function () {
				try {
					$(this).find('iframe').hide().attr('src', '//about:blank').end().empty();
				} catch (e) {}
			});

			if (coming.iframe.preload) {
				F.showLoading();

				iframe.one('load', function() {
					$(this).data('ready', 1);

					// iOS will lose scrolling if we resize
					if (!isTouch) {
						$(this).bind('load.fb', F.update);
					}

					// Without this trick:
					// - iframe won't scroll on iOS devices
					// - IE7 sometimes displays empty iframe
					$(this).parents('.fancybox-wrap').width('100%').removeClass('fancybox-tmp').show();

					F._afterLoad();
				});
			}

			coming.content = iframe.appendTo(coming.inner);

			if (!coming.iframe.preload) {
				F._afterLoad();
			}
		},

		_preloadImages: function() {
			var group = F.group,
				current = F.current,
				len = group.length,
				cnt = current.preload ? Math.min(current.preload, len - 1) : 0,
				item,
				i;

			for (i = 1; i <= cnt; i += 1) {
				item = group[(current.index + i) % len];

				if (item.type === 'image' && item.href) {
					new Image().src = item.href;
				}
			}
		},

		_afterLoad: function () {
			var coming = F.coming,
				previous = F.current,
				placeholder = 'fancybox-placeholder',
				current,
				content,
				type,
				scrolling,
				href,
				embed;

			F.hideLoading();

			if (!coming || F.isActive === false) {
				return;
			}

			if (false === F.trigger('afterLoad', coming, previous)) {
				coming.wrap.stop(true).trigger('onReset').remove();

				F.coming = null;

				return;
			}

			if (previous) {
				F.trigger('beforeChange', previous);

				previous.wrap.stop(true).removeClass('fancybox-opened')
					.find('.fancybox-item, .fancybox-nav')
					.remove();
			}

			F.unbindEvents();

			current = coming;
			content = coming.content;
			type = coming.type;
			scrolling = coming.scrolling;

			$.extend(F, {
				wrap : current.wrap,
				skin : current.skin,
				outer : current.outer,
				inner : current.inner,
				current : current,
				previous : previous
			});

			href = current.href;

			switch (type) {
				case 'inline':
				case 'ajax':
				case 'html':
					if (current.selector) {
						content = $('<div>').html(content).find(current.selector);

					} else if (isQuery(content)) {
						if (!content.data(placeholder)) {
							content.data(placeholder, $('<div class="' + placeholder + '"></div>').insertAfter(content).hide());
						}

						content = content.show().detach();

						current.wrap.bind('onReset', function () {
							if ($(this).find(content).length) {
								content.hide().replaceAll(content.data(placeholder)).data(placeholder, false);
							}
						});
					}
				break;

				case 'image':
					content = current.tpl.image.replace(/\{href\}/g, href);
				break;

				case 'swf':
					content = '<object id="fancybox-swf" classid="clsid:D27CDB6E-AE6D-11cf-96B8-444553540000" width="100%" height="100%"><param name="movie" value="' + href + '"></param>';
					embed = '';

					$.each(current.swf, function(name, val) {
						content += '<param name="' + name + '" value="' + val + '"></param>';
						embed += ' ' + name + '="' + val + '"';
					});

					content += '<embed src="' + href + '" type="application/x-shockwave-flash" width="100%" height="100%"' + embed + '></embed></object>';
				break;
			}

			if (!(isQuery(content) && content.parent().is(current.inner))) {
				current.inner.append(content);
			}

			// Give a chance for helpers or callbacks to update elements
			F.trigger('beforeShow');

			// Set scrolling before calculating dimensions
			current.inner.css('overflow', scrolling === 'yes' ? 'scroll' : (scrolling === 'no' ? 'hidden' : scrolling));

			// Set initial dimensions and start position
			F._setDimension();

			F.reposition();

			F.isOpen = false;
			F.coming = null;

			F.bindEvents();

			if (!F.isOpened) {
				$('.fancybox-wrap').not(current.wrap).stop(true).trigger('onReset').remove();

			} else if (previous.prevMethod) {
				F.transitions[previous.prevMethod]();
			}

			F.transitions[F.isOpened ? current.nextMethod : current.openMethod]();

			F._preloadImages();
		},

		_setDimension: function () {
			var viewport = F.getViewport(),
				steps = 0,
				canShrink = false,
				canExpand = false,
				wrap = F.wrap,
				skin = F.skin,
				inner = F.inner,
				current = F.current,
				width = current.width,
				height = current.height,
				minWidth = current.minWidth,
				minHeight = current.minHeight,
				maxWidth = current.maxWidth,
				maxHeight = current.maxHeight,
				scrolling = current.scrolling,
				scrollOut = current.scrollOutside ? current.scrollbarWidth : 0,
				margin = current.margin,
				wMargin = getScalar(margin[1] + margin[3]),
				hMargin = getScalar(margin[0] + margin[2]),
				wPadding,
				hPadding,
				wSpace,
				hSpace,
				origWidth,
				origHeight,
				origMaxWidth,
				origMaxHeight,
				ratio,
				width_,
				height_,
				maxWidth_,
				maxHeight_,
				iframe,
				body;

			// Reset dimensions so we could re-check actual size
			wrap.add(skin).add(inner).width('auto').height('auto').removeClass('fancybox-tmp');

			wPadding = getScalar(skin.outerWidth(true) - skin.width());
			hPadding = getScalar(skin.outerHeight(true) - skin.height());

			// Any space between content and viewport (margin, padding, border, title)
			wSpace = wMargin + wPadding;
			hSpace = hMargin + hPadding;

			origWidth = isPercentage(width) ? (viewport.w - wSpace) * getScalar(width) / 100 : width;
			origHeight = isPercentage(height) ? (viewport.h - hSpace) * getScalar(height) / 100 : height;

			if (current.type === 'iframe') {
				iframe = current.content;

				if (current.autoHeight && iframe.data('ready') === 1) {
					try {
						if (iframe[0].contentWindow.document.location) {
							inner.width(origWidth).height(9999);

							body = iframe.contents().find('body');

							if (scrollOut) {
								body.css('overflow-x', 'hidden');
							}

							origHeight = body.outerHeight(true);
						}

					} catch (e) {}
				}

			} else if (current.autoWidth || current.autoHeight) {
				inner.addClass('fancybox-tmp');

				// Set width or height in case we need to calculate only one dimension
				if (!current.autoWidth) {
					inner.width(origWidth);
				}

				if (!current.autoHeight) {
					inner.height(origHeight);
				}

				if (current.autoWidth) {
					origWidth = inner.width();
				}

				if (current.autoHeight) {
					origHeight = inner.height();
				}

				inner.removeClass('fancybox-tmp');
			}

			width = getScalar(origWidth);
			height = getScalar(origHeight);

			ratio = origWidth / origHeight;

			// Calculations for the content
			minWidth = getScalar(isPercentage(minWidth) ? getScalar(minWidth, 'w') - wSpace : minWidth);
			maxWidth = getScalar(isPercentage(maxWidth) ? getScalar(maxWidth, 'w') - wSpace : maxWidth);

			minHeight = getScalar(isPercentage(minHeight) ? getScalar(minHeight, 'h') - hSpace : minHeight);
			maxHeight = getScalar(isPercentage(maxHeight) ? getScalar(maxHeight, 'h') - hSpace : maxHeight);

			// These will be used to determine if wrap can fit in the viewport
			origMaxWidth = maxWidth;
			origMaxHeight = maxHeight;

			if (current.fitToView) {
				maxWidth = Math.min(viewport.w - wSpace, maxWidth);
				maxHeight = Math.min(viewport.h - hSpace, maxHeight);
			}

			maxWidth_ = viewport.w - wMargin;
			maxHeight_ = viewport.h - hMargin;

			if (current.aspectRatio) {
				if (width > maxWidth) {
					width = maxWidth;
					height = getScalar(width / ratio);
				}

				if (height > maxHeight) {
					height = maxHeight;
					width = getScalar(height * ratio);
				}

				if (width < minWidth) {
					width = minWidth;
					height = getScalar(width / ratio);
				}

				if (height < minHeight) {
					height = minHeight;
					width = getScalar(height * ratio);
				}

			} else {
				width = Math.max(minWidth, Math.min(width, maxWidth));

				if (current.autoHeight && current.type !== 'iframe') {
					inner.width(width);

					height = inner.height();
				}

				height = Math.max(minHeight, Math.min(height, maxHeight));
			}

			// Try to fit inside viewport (including the title)
			if (current.fitToView) {
				inner.width(width).height(height);

				wrap.width(width + wPadding);

				// Real wrap dimensions
				width_ = wrap.width();
				height_ = wrap.height();

				if (current.aspectRatio) {
					while ((width_ > maxWidth_ || height_ > maxHeight_) && width > minWidth && height > minHeight) {
						if (steps++ > 19) {
							break;
						}

						height = Math.max(minHeight, Math.min(maxHeight, height - 10));
						width = getScalar(height * ratio);

						if (width < minWidth) {
							width = minWidth;
							height = getScalar(width / ratio);
						}

						if (width > maxWidth) {
							width = maxWidth;
							height = getScalar(width / ratio);
						}

						inner.width(width).height(height);

						wrap.width(width + wPadding);

						width_ = wrap.width();
						height_ = wrap.height();
					}

				} else {
					width = Math.max(minWidth, Math.min(width, width - (width_ - maxWidth_)));
					height = Math.max(minHeight, Math.min(height, height - (height_ - maxHeight_)));
				}
			}

			if (scrollOut && scrolling === 'auto' && height < origHeight && (width + wPadding + scrollOut) < maxWidth_) {
				width += scrollOut;
			}

			inner.width(width).height(height);

			wrap.width(width + wPadding);

			width_ = wrap.width();
			height_ = wrap.height();

			canShrink = (width_ > maxWidth_ || height_ > maxHeight_) && width > minWidth && height > minHeight;
			canExpand = current.aspectRatio ? (width < origMaxWidth && height < origMaxHeight && width < origWidth && height < origHeight) : ((width < origMaxWidth || height < origMaxHeight) && (width < origWidth || height < origHeight));

			$.extend(current, {
				dim : {
					width	: getValue(width_),
					height	: getValue(height_)
				},
				origWidth : origWidth,
				origHeight : origHeight,
				canShrink : canShrink,
				canExpand : canExpand,
				wPadding : wPadding,
				hPadding : hPadding,
				wrapSpace : height_ - skin.outerHeight(true),
				skinSpace : skin.height() - height
			});

			if (!iframe && current.autoHeight && height > minHeight && height < maxHeight && !canExpand) {
				inner.height('auto');
			}
		},

		_getPosition: function (onlyAbsolute) {
			var current = F.current,
				viewport = F.getViewport(),
				margin = current.margin,
				width = F.wrap.width() + margin[1] + margin[3],
				height = F.wrap.height() + margin[0] + margin[2],
				rez = {
					position: 'absolute',
					top : margin[0],
					left : margin[3]
				};

			if (current.autoCenter && current.fixed && !onlyAbsolute && height <= viewport.h && width <= viewport.w) {
				rez.position = 'fixed';

			} else if (!current.locked) {
				rez.top += viewport.y;
				rez.left += viewport.x;
			}

			rez.top = getValue(Math.max(rez.top, rez.top + ((viewport.h - height) * current.topRatio)));
			rez.left = getValue(Math.max(rez.left, rez.left + ((viewport.w - width) * current.leftRatio)));

			return rez;
		},

		_afterZoomIn: function () {
			var current = F.current;

			if (!current) {
				return;
			}

			F.isOpen = F.isOpened = true;

			F.wrap.css('overflow', 'visible').addClass('fancybox-opened').hide().show(0);

			F.update();

			// Assign a click event
			if (current.closeClick || (current.nextClick && F.group.length > 1)) {
				F.inner.css('cursor', 'pointer').bind('click.fb', function(e) {
					if (!$(e.target).is('a') && !$(e.target).parent().is('a')) {
						e.preventDefault();

						F[current.closeClick ? 'close' : 'next']();
					}
				});
			}

			// Create a close button
			if (current.closeBtn) {
				$(current.tpl.closeBtn).appendTo(F.skin).bind('click.fb', function(e) {
					e.preventDefault();

					F.close();
				});
			}

			// Create navigation arrows
			if (current.arrows && F.group.length > 1) {
				if (current.loop || current.index > 0) {
					$(current.tpl.prev).appendTo(F.outer).bind('click.fb', F.prev);
				}

				if (current.loop || current.index < F.group.length - 1) {
					$(current.tpl.next).appendTo(F.outer).bind('click.fb', F.next);
				}
			}

			F.trigger('afterShow');

			// Stop the slideshow if this is the last item
			if (!current.loop && current.index === current.group.length - 1) {

				F.play(false);

			} else if (F.opts.autoPlay && !F.player.isActive) {
				F.opts.autoPlay = false;

				F.play(true);
			}
		},

		_afterZoomOut: function (obj) {
			obj = obj || F.current;

			$('.fancybox-wrap').trigger('onReset').remove();

			$.extend(F, {
				group : {},
				opts : {},
				router : false,
				current : null,
				isActive : false,
				isOpened : false,
				isOpen : false,
				isClosing : false,
				wrap : null,
				skin : null,
				outer : null,
				inner : null
			});

			F.trigger('afterClose', obj);
		}
	});

	/*
	 *	Default transitions
	 */

	F.transitions = {
		getOrigPosition: function () {
			var current = F.current,
				element = current.element,
				orig = current.orig,
				pos = {},
				width = 50,
				height = 50,
				hPadding = current.hPadding,
				wPadding = current.wPadding,
				viewport = F.getViewport();

			if (!orig && current.isDom && element.is(':visible')) {
				orig = element.find('img:first');

				if (!orig.length) {
					orig = element;
				}
			}

			if (isQuery(orig)) {
				pos = orig.offset();

				if (orig.is('img')) {
					width = orig.outerWidth();
					height = orig.outerHeight();
				}

			} else {
				pos.top = viewport.y + (viewport.h - height) * current.topRatio;
				pos.left = viewport.x + (viewport.w - width) * current.leftRatio;
			}

			if (F.wrap.css('position') === 'fixed' || current.locked) {
				pos.top -= viewport.y;
				pos.left -= viewport.x;
			}

			pos = {
				top : getValue(pos.top - hPadding * current.topRatio),
				left : getValue(pos.left - wPadding * current.leftRatio),
				width : getValue(width + wPadding),
				height : getValue(height + hPadding)
			};

			return pos;
		},

		step: function (now, fx) {
			var ratio,
				padding,
				value,
				prop = fx.prop,
				current = F.current,
				wrapSpace = current.wrapSpace,
				skinSpace = current.skinSpace;

			if (prop === 'width' || prop === 'height') {
				ratio = fx.end === fx.start ? 1 : (now - fx.start) / (fx.end - fx.start);

				if (F.isClosing) {
					ratio = 1 - ratio;
				}

				padding = prop === 'width' ? current.wPadding : current.hPadding;
				value = now - padding;

				F.skin[prop](getScalar(prop === 'width' ? value : value - (wrapSpace * ratio)));
				F.inner[prop](getScalar(prop === 'width' ? value : value - (wrapSpace * ratio) - (skinSpace * ratio)));
			}
		},

		zoomIn: function () {
			var current = F.current,
				startPos = current.pos,
				effect = current.openEffect,
				elastic = effect === 'elastic',
				endPos = $.extend({opacity : 1}, startPos);

			// Remove "position" property that breaks older IE
			delete endPos.position;

			if (elastic) {
				startPos = this.getOrigPosition();

				if (current.openOpacity) {
					startPos.opacity = 0.1;
				}

			} else if (effect === 'fade') {
				startPos.opacity = 0.1;
			}

			F.wrap.css(startPos).animate(endPos, {
				duration : effect === 'none' ? 0 : current.openSpeed,
				easing : current.openEasing,
				step : elastic ? this.step : null,
				complete : F._afterZoomIn
			});
		},

		zoomOut: function () {
			var current = F.current,
				effect = current.closeEffect,
				elastic = effect === 'elastic',
				endPos = {opacity : 0.1};

			if (elastic) {
				endPos = this.getOrigPosition();

				if (current.closeOpacity) {
					endPos.opacity = 0.1;
				}
			}

			F.wrap.animate(endPos, {
				duration : effect === 'none' ? 0 : current.closeSpeed,
				easing : current.closeEasing,
				step : elastic ? this.step : null,
				complete : F._afterZoomOut
			});
		},

		changeIn: function () {
			var current = F.current,
				effect = current.nextEffect,
				startPos = current.pos,
				endPos = { opacity : 1 },
				direction = F.direction,
				distance = 200,
				field;

			startPos.opacity = 0.1;

			if (effect === 'elastic') {
				field = direction === 'down' || direction === 'up' ? 'top' : 'left';

				if (direction === 'down' || direction === 'right') {
					startPos[field] = getValue(getScalar(startPos[field]) - distance);
					endPos[field] = '+=' + distance + 'px';

				} else {
					startPos[field] = getValue(getScalar(startPos[field]) + distance);
					endPos[field] = '-=' + distance + 'px';
				}
			}

			// Workaround for http://bugs.jquery.com/ticket/12273
			if (effect === 'none') {
				F._afterZoomIn();

			} else {
				F.wrap.css(startPos).animate(endPos, {
					duration : current.nextSpeed,
					easing : current.nextEasing,
					complete : F._afterZoomIn
				});
			}
		},

		changeOut: function () {
			var previous = F.previous,
				effect = previous.prevEffect,
				endPos = { opacity : 0.1 },
				direction = F.direction,
				distance = 200;

			if (effect === 'elastic') {
				endPos[direction === 'down' || direction === 'up' ? 'top' : 'left'] = (direction === 'up' || direction === 'left' ? '-' : '+') + '=' + distance + 'px';
			}

			previous.wrap.animate(endPos, {
				duration : effect === 'none' ? 0 : previous.prevSpeed,
				easing : previous.prevEasing,
				complete : function () {
					$(this).trigger('onReset').remove();
				}
			});
		}
	};

	/*
	 *	Overlay helper
	 */

	F.helpers.overlay = {
		defaults : {
			closeClick : true, // if true, fancyBox will be closed when user clicks on the overlay
			speedOut : 200, // duration of fadeOut animation
			showEarly : true, // indicates if should be opened immediately or wait until the content is ready
			css : {}, // custom CSS properties
			locked : !isTouch, // if true, the content will be locked into overlay
			fixed : true // if false, the overlay CSS position property will not be set to "fixed"
		},

		overlay : null, // current handle
		fixed : false, // indicates if the overlay has position "fixed"
		el : $('html'), // element that contains "the lock"

		// Public methods
		create : function(opts) {
			var parent;

			opts = $.extend({}, this.defaults, opts);

			if (this.overlay) {
				this.close();
			}

			parent = F.coming ? F.coming.parent : opts.parent;

			this.overlay = $('<div class="fancybox-overlay"></div>').appendTo(parent && parent.lenth ? parent : 'body');
			this.fixed = false;

			if (opts.fixed && F.defaults.fixed) {
				this.overlay.addClass('fancybox-overlay-fixed');

				this.fixed = true;
			}
		},

		open : function(opts) {
			var that = this;

			opts = $.extend({}, this.defaults, opts);

			if (this.overlay) {
				this.overlay.unbind('.overlay').width('auto').height('auto');

			} else {
				this.create(opts);
			}

			if (!this.fixed) {
				W.bind('resize.overlay', $.proxy(this.update, this));

				this.update();
			}

			if (opts.closeClick) {
				this.overlay.bind('click.overlay', function(e) {
					if ($(e.target).hasClass('fancybox-overlay')) {
						if (F.isActive) {
							F.close();
						} else {
							that.close();
						}

						return false;
					}
				});
			}

			this.overlay.css(opts.css).show();
		},

		close : function() {
			W.unbind('resize.overlay');

			if (this.el.hasClass('fancybox-lock')) {
				$('.fancybox-margin').removeClass('fancybox-margin');

				this.el.removeClass('fancybox-lock');

				W.scrollTop(this.scrollV).scrollLeft(this.scrollH);
			}

			$('.fancybox-overlay').remove().hide();

			$.extend(this, {
				overlay : null,
				fixed : false
			});
		},

		// Private, callbacks

		update : function () {
			var width = '100%', offsetWidth;

			// Reset width/height so it will not mess
			this.overlay.width(width).height('100%');

			// jQuery does not return reliable result for IE
			if (IE) {
				offsetWidth = Math.max(document.documentElement.offsetWidth, document.body.offsetWidth);

				if (D.width() > offsetWidth) {
					width = D.width();
				}

			} else if (D.width() > W.width()) {
				width = D.width();
			}

			this.overlay.width(width).height(D.height());
		},

		// This is where we can manipulate DOM, because later it would cause iframes to reload
		onReady : function (opts, obj) {
			var overlay = this.overlay;

			$('.fancybox-overlay').stop(true, true);

			if (!overlay) {
				this.create(opts);
			}

			if (opts.locked && this.fixed && obj.fixed) {
				obj.locked = this.overlay.append(obj.wrap);
				obj.fixed = false;
			}

			if (opts.showEarly === true) {
				this.beforeShow.apply(this, arguments);
			}
		},

		beforeShow : function(opts, obj) {
			if (obj.locked && !this.el.hasClass('fancybox-lock')) {
				if (this.fixPosition !== false) {
					$('*').filter(function(){
						return ($(this).css('position') === 'fixed' && !$(this).hasClass("fancybox-overlay") && !$(this).hasClass("fancybox-wrap"));
					}).addClass('fancybox-margin');
				}

				this.el.addClass('fancybox-margin');

				this.scrollV = W.scrollTop();
				this.scrollH = W.scrollLeft();

				this.el.addClass('fancybox-lock');

				W.scrollTop(this.scrollV).scrollLeft(this.scrollH);
			}

			this.open(opts);
		},

		onUpdate : function() {
			if (!this.fixed) {
				this.update();
			}
		},

		afterClose: function (opts) {
			// Remove overlay if exists and fancyBox is not opening
			// (e.g., it is not being open using afterClose callback)
			if (this.overlay && !F.coming) {
				this.overlay.fadeOut(opts.speedOut, $.proxy(this.close, this));
			}
		}
	};

	/*
	 *	Title helper
	 */

	F.helpers.title = {
		defaults : {
			type : 'float', // 'float', 'inside', 'outside' or 'over',
			position : 'bottom' // 'top' or 'bottom'
		},

		beforeShow: function (opts) {
			var current = F.current,
				text = current.title,
				type = opts.type,
				title,
				target;

			if ($.isFunction(text)) {
				text = text.call(current.element, current);
			}

			if (!isString(text) || $.trim(text) === '') {
				return;
			}

			title = $('<div class="fancybox-title fancybox-title-' + type + '-wrap">' + text + '</div>');

			switch (type) {
				case 'inside':
					target = F.skin;
				break;

				case 'outside':
					target = F.wrap;
				break;

				case 'over':
					target = F.inner;
				break;

				default: // 'float'
					target = F.skin;

					title.appendTo('body');

					if (IE) {
						title.width(title.width());
					}

					title.wrapInner('');

					//Increase bottom margin so this title will also fit into viewport
					F.current.margin[2] += Math.abs(getScalar(title.css('margin-bottom')));
				break;
			}

			title[(opts.position === 'top' ? 'prependTo' : 'appendTo')](target);
		}
	};

	// jQuery plugin initialization
	$.fn.fancybox = function (options) {
		var index,
			that = $(this),
			selector = this.selector || '',
			run = function(e) {
				var what = $(this).blur(), idx = index, relType, relVal;

				if (!(e.ctrlKey || e.altKey || e.shiftKey || e.metaKey) && !what.is('.fancybox-wrap')) {
					relType = options.groupAttr || 'data-fancybox-group';
					relVal = what.attr(relType);

					if (!relVal) {
						relType = 'rel';
						relVal = what.get(0)[relType];
					}

					if (relVal && relVal !== '' && relVal !== 'nofollow') {
						what = selector.length ? $(selector) : that;
						what = what.filter('[' + relType + '="' + relVal + '"]');
						idx = what.index(this);
					}

					options.index = idx;

					// Stop an event from bubbling if everything is fine
					if (F.open(what, options) !== false) {
						e.preventDefault();
					}
				}
			};

		options = options || {};
		index = options.index || 0;

		if (!selector || options.live === false) {
			that.unbind('click.fb-start').bind('click.fb-start', run);

		} else {
			D.undelegate(selector, 'click.fb-start').delegate(selector + ":not('.fancybox-item, .fancybox-nav')", 'click.fb-start', run);
		}

		this.filter('[data-fancybox-start=1]').trigger('click');

		return this;
	};

	// Tests that need a body at doc ready
	D.ready(function() {
		var w1, w2;

		if ($.scrollbarWidth === undefined) {
			// http://benalman.com/projects/jquery-misc-plugins/#scrollbarwidth
			$.scrollbarWidth = function() {
				var parent = $('<div style="width:50px;height:50px;overflow:auto"><div/></div>').appendTo('body'),
					child = parent.children(),
					width = child.innerWidth() - child.height(99).innerWidth();

				parent.remove();

				return width;
			};
		}

		if ($.support.fixedPosition === undefined) {
			$.support.fixedPosition = (function() {
				var elem = $('<div style="position:fixed;top:20px;"></div>').appendTo('body'),
					fixed = (elem[0].offsetTop === 20 || elem[0].offsetTop === 15);

				elem.remove();

				return fixed;
			}());
		}

		$.extend(F.defaults, {
			scrollbarWidth : $.scrollbarWidth(),
			fixed : $.support.fixedPosition,
			parent : $('body')
		});
		//Get real width of page scroll-bar
		w1 = $(window).width();

		H.addClass('fancybox-lock-test');

		w2 = $(window).width();

		H.removeClass('fancybox-lock-test');

		$("<style type='text/css'>.fancybox-margin{margin-right:" + (w2 - w1) + "px;}</style>").appendTo("head");

	});

}(window, document, jQuery));

89399fb03748ad3bb25eb07bb4d8e49e456b5aa1.js
define([], function () {
 return {
 readerApiModes: {
 debug: false
 }
 };
});

7f68164f51fe1846fcb8920fd66b03d9f7c0b3c7.js
define(['jquery',
 'backbone',
 'underscore',
 'bowser',
 'modules/core/Registry',
 './WOMIAudioContainer',
 './WOMIImageContainer',
 'modules/core/engines/EngineInterface',
 'libs/avplayer/player.ext'
], function ($, Backbone, _, bowser, Registry, WOMIAudioContainer, WOMIImageContainer, EngineInterface, player) {
 var isTouch = true;
 var WOMIMovieContainer = WOMIAudioContainer.extend({
 maxHeight: 0.7,
 mobileWidth: 450,
 containerClass: 'movie-container',
 quality : [
 {
 "level": 1080,
 "label": "Najwyższa",
 "profile": "(,,mp4_hi_hl)",
 "type": "video/mp4"
 },
 {
 "level": 720,
 "label": "Wysoka",
 "profile": "(,,mp4_med_ml)",
 "type": "video/mp4"
 },
 {
 "level": 360,
 "label": "Średnia",
 "profile": "(,,mp4_low_bl)",
 "type": "video/mp4"
 },
 {
 "level": 270,
 "label": "Niska",
 "profile": "(,,mp4_vlow_bl)",
 "type": "video/mp4"
 },
 {
 "level": 1080,
 "label": "Najwyższa",
 "profile": "(,,webm_hi)",
 "type": "video/webm"
 },
 {
 "level": 720,
 "label": "Wysoka",
 "profile": "(,,webm_hi)",
 "type": "video/webm"
 },
 {
 "level": 360,
 "label": "Średnia",
 "profile": "(,,webm_med)",
 "type": "video/webm"
 }
// ,{
// "level": 270,
// "label": "Niska",
// "profile": "(,,webm_med)",
// "type": "video/webm"
// }
],

 _metadata: {
 Profiles: ["mp4_vlow_bl", "mp4_low_bl", "mp4_med_ml", "mp4_hi_hl", "webm_med", "webm_hi"],
 Subtitles: [],
 AltAudio: 0,
 AllowDistribution: true,
 Duration: 0
 },

 _lookForBlocks: function () {
 this.metadata = _.clone(this._metadata);
 //this._mainContainerElement = $(this._mainContainerElement[0]);
 this._keyframe = this._mainContainerElement.find('.keyframe').clone();
 this._audioTracksBlock = this._mainContainerElement.find('.audio-tracks');
 this._subtitlesBlock = this._mainContainerElement.find('.subtitles');
 },

 _discoverContent: function () {
 var _this = this;
 this._altText = this.options.altText || this._mainContainerElement.data('alt');
 this._title = this.options.title || this._mainContainerElement.data('title');
 this._width = this.options.width || this._mainContainerElement.data('width');
 this._movieId = this.options.movieId || this._mainContainerElement.data('movie-id');
 this._aspectRatio = this.options.aspectRatio || parseFloat(this._mainContainerElement.data('aspect-ratio')) || 1.78;
 this._describedBy = this._mainContainerElement.data('described-by');
 this.audioTracks = null;
 this.subtitles = null;
 if (this._audioTracksBlock.length) {
 this.audioTracks = [];
 this._audioTracksBlock.find('div').each(function (index, element) {
 _this.audioTracks.push({
 text: $(element).data('text'),
 value: $(element).data('value')
 });
 });
 }
 if (this._subtitlesBlock.length) {
 this.subtitles = [];
 this._subtitlesBlock.find('div').each(function (index, element) {
 _this.subtitles.push({
 text: $(element).data('text'),
 value: $(element).data('value')
 });
 });
 }
 if (Registry.get("layout")) {
 this.listenTo(Registry.get("layout"), "selectedPage", this._pageChanged);
 }

 },

 _pageChanged: function () {
 if(this.video && !this.video.paused()){
 this.video.pause();
 }
 },

 contextCallback: function () {
 this.hasFullscreenItem = function () {
 return true;
 };
 //this._fullscreenMenuItem().callback();
 //this._mainContainerElement[0].dispatchEvent(engines.EngineInterface.prototype._fsEvent.apply(null));
 this.parent.trigger('openContext');
 this.hasFullscreenItem = function () {
 return false;
 };
 },

 getFSElement: function () {
 var parentDiv = this._mainContainerElement.clone();
 var cloned = $('<div>');
 parentDiv = $('<div>');
 //cloned.remove();
 var _this = this;

 parentDiv.width($(window).width());
 parentDiv.height($(window).height());

 //TODO - commented jplayer code
// if (this.player) {
// this.player.Player.jPlayer('pause');
// }

 return {element: parentDiv,
 cancelUpdate: true,
 options: {
 scrolling: 'hidden',
 helpers: {
 overlay: {
 locked: isTouch
 }
 }
 },
 afterLoad: function () {
 this.movie = new WOMIMovieContainer({ el: cloned, options: {
 altText: _this._altText,
 width: _this._width,
 aspectRatio: _this._aspectRatio,
 movieId: _this._movieId
 }});
 this.movie._isFS = true;
 parentDiv.append(this.movie.render());
 this.movie.trigger('renderDone');

 },
 reload: function () {
 },
 afterClose: function () {
 this.movie && this.movie.dispose();
 }
 };
 },

 _calcWidth: function () {
 var w = this._avElement.width();
 var maxH = $(window).height() * this.maxHeight;
 if (this._isFS) {
 maxH = $(window).height();
 w = $(window).width();
 }
 //console.log(w, maxH, this._aspectRatio, w / this._aspectRatio);
 if (maxH < (w / this._aspectRatio)) {
 w = maxH * this._aspectRatio;
 }
 //console.log(w);
 return w;
 },
 getAnyImage: function () {
 return this._keyframe;
 },

 _setPLLanguage: function () {
 var polish = {
 "Play": "Odtwarzaj",
 "Pause": "Pauza",
 "Current Time": "Aktualny czas",
 "Duration Time": "Czas trwania",
 "Remaining Time": "Pozostały czas",
 "Stream Type": "Rodzaj strumienia",
 "LIVE": "Na żywo",
 "Loaded": "Załadowany",
 "Progress": "Postęp",
 "Fullscreen": "Pełny ekran",
 "Non-Fullscreen": "Wyłączenie pełnego ekranu",
 "Mute": "Wycisz",
 "Unmute": "Wyłączenie wyciszenia",
 "Playback Rate": "Playback Rate",
 "Subtitles": "Napisy",
 "subtitles off": "Wyłączenie napisów",
 "Captions": "Podpisy",
 "captions off": "Wyłączenie podpisów",
 "Chapters": "Rozdziały",
 "You aborted the video playback": "Anulowano playback filmu.",
 "A network error caused the video download to fail part-way.": "Problem z siecią spowodował brak fragmentu nagrania.",
 "The video could not be loaded, either because the server or network failed or because the format is not supported.": "Nie można załadować filmu z powodu błędu połączenia.",
 "The video playback was aborted due to a corruption problem or because the video used features your browser did not support.": "Anulowano odtwarzanie filmu z powodu błędu połączenia.",
 "No compatible source was found for this video.": "Nie odnaleziono właściwego pliku źródłowego"
 };

 videojs.addLanguage('pl', polish);
 },

 _runMedia: function () {
 //createVideoPlayer(this._avElement, this._movieId, this.audioTracks, this.subtitles);
 //$(window).on('resize', this._resize());
 this.alreadyLoaded = true;
 var id = (new Date()).getTime() + '_' + this._movieId;
 this._src = '/content/womi/' + this._movieId + '/blabla';

 //TODO test movie with track and subtitles
 // this._movieId = "star_trek3";

 this._id = id;
 //this.player = null;
 this.video = null;
 var _this = this;
 var div = $('<div>', { id: id, width: this._calcWidth() });
 if (this._isFS) {
 div.height($(window).height());
 }
 div.css('margin', '0 auto');
 this.mainDiv = div;
 this._avElement.append(div);

 // TODO - commented jplayer code
// var settings = {
// aspectRatio: this._aspectRatio,
// generatehtml: true,
// autoplay: false
// };
// if (this._keyframe.length) {
// var img = new WOMIImageContainer({el: this._keyframe, options: {}});
// settings.poster = img.getUrl();
// }
// if (this._describedBy) {
// settings.showTranscrptionCallback = function (id) {
// $.fancybox({
// content: $('#' + id).html()
// });
// };
// settings.transcrptionId = this._describedBy;
// }

 // TODO - commented jplayer code
// this.player = new player.createVideoPlayer('#' + id, '' + this._movieId, settings);
// div.find('video').attr('title', this._altText);
// if (this._isFS) {
// div.find('.jp-full-screen').remove();
// }

 this._setPLLanguage();

 this._createAltAudioButton();

 if (this._describedBy) {
 this._createTranscriptButton();
 }

 this._createSettingsButton();

 this._createDownloadButton();

 this._getMetadataInfo();

// if (!this._isFS && (/*(bowser.firefox && bowser.version >= 30) || */bowser.msie)) {
// var btn = div.find('.jp-full-screen');
// btn.off('click');
// btn.on('click', function () {
// _this.contextCallback();
// });
//
// }

 // TODO - commented jplayer code
// var scroll = _this._mainContainerElement.offset().top + 100;
//
// this.videoFS = false;
//
// var fsControl;
//
// $('.jp-full-screen').on("click", function(ev){
// scroll = _this._mainContainerElement.offset().top + 100;
// _this.videoFS = true;
// fsControl = _this._fullscreenControl();
// });
//
// function windowRestore(){
// window.setTimeout(function () {
// $(window).scrollTop(scroll);
// var after = $(window).scrollTop();
// _this.videoFS = false;
// fsControl();
// }, 500);
// }
//
// $('.jp-restore-screen').on("click", function(ev){
// windowRestore();
// });
//
// $(window).keyup(function(e) {
// var code = (e.keyCode ? e.keyCode : e.which);
// if (code == 27) {
// if(_this.videoFS){
// windowRestore();
// }
// }
// });

 //FF > 30 hack for fullscreen
 if ((bowser.firefox && bowser.version >= 30 && bowser.version < 33)) {
 var full = false;
 var change = true;
 var placeholder = $('<div>');
 var btn = div.find('.jp-full-screen');
 var clickHandlers = $._data(btn[0], "events")['click'];
 var clickFunc = [];
 _.each(clickHandlers, function (value) {
 clickFunc.push(value.handler);
 });
 btn.off('click');
 //console.log(clickFunc);

 btn.click(function (e) {
 var t = this;
 e.preventDefault();
 if (!full) {
 _this._avElement.after(placeholder);
 $('body').append(_this._avElement);
 } else {
 }
 full = !full;
 });

 _.each(clickFunc, function (v) {
 btn.click(v);
 });

 $(document).on('mozfullscreenchange', function () {
 if (!change && full) {
 placeholder.after(_this._avElement);
 full = !full;
 change = true;
 } else if (full) {
 change = false;
 }
 });
 }

 this._activateViewPortCheck();

 $('input.note-toggle').on("click", function(){
 setTimeout(function() { _this._resizeHandler() }, 200);
 });

 },

 _createVideoPlayer: function(mainDiv, options){
 var _this = this;

 var plugins = {
 resolutionSelector: {
 default_res: 'Średnia'
 },
 settings: {},
 download: {}
 };
 if (_this.metadata.AltAudio) {
 plugins['AltAudio'] = {};
 }
 if (_this._describedBy) {
 plugins['transcript'] = {};
 }

 options.plugins = plugins;

 mainDiv.html(_this._generateVideoTemplate(mainDiv));
 mainDiv.attr('id', mainDiv.attr('id') + Math.floor((Math.random() * 10000) + 1).toString());
 var videoElem = $(mainDiv.children()[0]);
 videoElem.attr('id', videoElem.attr('id') + Math.floor((Math.random() * 10000) + 1).toString());
 var tempId = videoElem.attr('id');

 this.videoFS = false;

 function subsCheck(vplayer){
 var captions = false;
 var subtitles = false;
 .each(vplayer.textTrackDisplay.childIndex, function(track){
 if(track != null){
 if(track.id().indexOf('vjs_captions') != -1){
 captions = true;
 }else if(track.id().indexOf('vjs_subtitles') != -1){
 subtitles = true;
 }else{
 captions = false;
 subtitles = false;
 }
 }else{
 }
 });
 var controlBar = $(_this.video.controlBar.el());
 if(captions){
 _.each(_this.video.textTracks(), function(subObj){
 if(subObj.el().className == "vjs-captions vjs-text-track"){
 var captionsBtn = controlBar.find('div.vjs-captions-button');
 if(!captionsBtn.hasClass('shadow-selected-track')){
 captionsBtn.addClass('shadow-selected-track');
 }
 }
 });
 }else{
 _.each(_this.video.textTracks(), function(subObj){
 var captionsBtn = controlBar.find('div.vjs-captions-button');
 if(captionsBtn.hasClass('shadow-selected-track')){
 captionsBtn.removeClass('shadow-selected-track');
 }
 });

 }
 if(subtitles){
 _.each(_this.video.textTracks(), function(subObj){
 var subtitlesBtn = controlBar.find('div.vjs-subtitles-button');
 if(!subtitlesBtn.hasClass('shadow-selected-track')){
 subtitlesBtn.addClass('shadow-selected-track');
 }
 });
 }else{
 _.each(_this.video.textTracks(), function(subObj){
 var subtitlesBtn = controlBar.find('div.vjs-subtitles-button');
 if(subtitlesBtn.hasClass('shadow-selected-track')){
 subtitlesBtn.removeClass('shadow-selected-track');
 }
 });
 }
 }

 videojs(document.getElementById(tempId), options, function(){
 this.hotkeys({
 volumeStep: 0.1,
 seekStep: 5,
 enableMute: true,
 enableFullscreen: true
 });
 _this.video = this;

 var goodframes = 10;
 this.on('timeupdate', function(e){
 if(goodframes++>15) {
 $('.vjs-overlay').remove();
 }

 if(e.currentTarget && window.parent) {
 var toSend = {
 eventName: 'timeupdate',
 currentTime: e.currentTarget.currentTime,
 duration: e.currentTarget.duration,
 ended: e.currentTarget.ended,
 paused: e.currentTarget.paused,
 seeking: e.currentTarget.seeking,
 womiId:_this._movieId,
 womiVersion: 1
 };
 window.parent.postMessage(toSend, '*');
 }
 });

 var lastTime = 0;
 this.on('progress', function() {

 var currentTime = _this.video.currentTime();
 if (lastTime != currentTime || currentTime < 1.0) {
 lastTime = currentTime;
 } else if (_this.video.paused() === false) {
 setTimeout(function() {
 var nextTime = _this.video.currentTime();
 if(nextTime == currentTime) {
 _this.video.overlay({
 overlays: [{
 content: 'Materiał zacina się z powodu wolnego łącza, rozważ zmianę jakości filmu',
 start: nextTime,
 end: nextTime + 2
 }]
 });
 goodframes=0;
 }
 }, 100);

 }

 });

 _this.postCreate();
 setTimeout(function(){
 if(_this.video.width() < _this.mobileWidth){
 _this._switchPlayerOptions(true);
 }else{
 _this._switchPlayerOptions(false);
 }
 if (window.localStorage) {
 if(localStorage.getItem("defaultVideoResolution")) {
 var resolutionFromStorage = localStorage.getItem("defaultVideoResolution");
 var availabledQualities = [];
 _.each(_this.metadata.Profiles, function(profile){
 var _profile = "(,,"+profile+")";
 _.each(_this.quality, function(q){
 if(q.profile == _profile){
 availabledQualities.push(q.label);
 };
 });
 });
 if(_.contains(availabledQualities, resolutionFromStorage)){
 _this.video.changeStartRes(resolutionFromStorage);
 } else {
 _this.video.changeStartRes("Średnia");
 }
 } else {
 _this.video.changeStartRes("Średnia");
 }
 } else {
 _this.video.changeStartRes("Średnia");
 }

 }, 500);

 // EPP-5789 START
 var toHide = _this._mainContainerElement.find('.vjs-control-bar')
 .children('.vjs-progress-control, .vjs-time-controls');

 _this.video.on('play', function() {
 toHide.attr('aria-hidden', 'true');
 });

 _this.video.on('pause', function() {
 toHide.removeAttr('aria-hidden');
 });

 var vpc = $(_this._mainContainerElement).find('.vjs-play-control');
 if (!vpc.find('.vjs-play-icon').length) {
 vpc.append('' + String.fromCharCode(0xE001) + '' +
 '' + String.fromCharCode(0xE002) + '');
 }
 // EPP-5789 END
 _this.video.on('changeRes', function() {
 if (window.localStorage) {
 localStorage.setItem("defaultVideoResolution", _this.video.getCurrentRes());
 }
 });

 _this.video.on('captionstrackchange', function() {
 subsCheck(_this.video);
 });

 _this.video.on('subtitlestrackchange', function() {
 subsCheck(_this.video);
 });

 var fsControl;

 _this.video.on('fullscreenchange', function() {
 var scroll = _this._mainContainerElement.offset().top + 100;

 function windowRestore(){
 window.setTimeout(function () {
 $(window).scrollTop(scroll);
 var after = $(window).scrollTop();
 _this.videoFS = false;
 fsControl();
 }, 0);
 }

 if(_this.video.isFullscreen()){
 scroll = _this._mainContainerElement.offset().top + 100;
 _this.videoFS = true;
 fsControl = _this._fullscreenControl();
 }else{
 windowRestore();
 }
 });

 });
 },

 _generateVideoTemplate: function(videoContainer){

 var _this = this;

 if (!String.prototype.format) {
 String.prototype.format = function () {
 var args = arguments;
 return this.replace(/{(\d+)}/g, function (match, number) {
 return typeof args[number] != 'undefined' ? args[number] : match;
 });
 };
 }

 var videoTemp = '<video id="{0}_video" class="video-js vjs-default-skin vjs-big-play-centered" >';

 _.each(_this.metadata.Profiles, function(profile){

 var _profile = "(,,"+profile+")";

 var selectedQuality;

 _.each(_this.quality, function(q){
 if(q.profile == _profile){
 selectedQuality = q;
 };
 });

 var format_selector = _this._movieId + _profile;

 videoTemp += '<source data-res="'+ selectedQuality.label +'" data-level="'+ selectedQuality.level +'" src="'+ _this._buildUrl(format_selector, _this.urlType.Material)+'" type="'+ selectedQuality.type +'" />';

 });

 if (_this.metadata.Subtitles) {
 _.each(_this.metadata.Subtitles, function(subs){
 if(subs == "captions"){
 var captionsId = _this._movieId + "_captions";
 videoTemp += '<track kind="captions" src="'+_this._buildUrl(captionsId, _this.urlType.Subtitle)+'" srclang="pl" label="Polskie"></track>';
 } else {
 var subtitlesId = _this._movieId + "_subtitles";
 videoTemp += '<track kind="subtitles" src="'+_this._buildUrl(subtitlesId, _this.urlType.Subtitle)+'" srclang="pl" label="Polskie"></track>';
 }
 });
 }

 videoTemp += '<p class="vjs-no-js">Aby obejrzeć film włącz JavaScript w przeglądarce</p></video>';
 var formattedTemplate = videoTemp.format(this._movieId);
 videoContainer.html(formattedTemplate);
 },

 _createDownloadButton: function() {
 var _this = this;

 videojs.download = videojs.Button.extend({
 init: function(player, options){
 videojs.Button.call(this, player, options);
 this.on(['click', 'tap'], this.onClick);
 }
 });

 function confirm(success, text) {
 if (typeof text === 'undefined') {
 text = 'Nie udało się skopiować linku';
 } else {
 text = '<textarea class="video_link_area">'+text+'</textarea>';
 }
 $.fancybox.open({
 content: success ? 'Skopiowano link do schowka' : text,
 wrapCSS: 'fancybox-modal reader-content',
 width: '250px',
 height: 'auto',
 autoSize: false,
 afterShow: function() {
 setTimeout(function() {$('.fancybox-inner').css({height: '50px', width: '250px', 'text-align': 'center'});
 $('.video_link_area').css('width', '100%').select();
 }, 0);
 },
 helpers: {
 overlay: {
 closeClick: true,
 locked: true,
 css: {
 'background': 'rgba(255, 255, 255, 0.3)'
 }
 }
 }
 });
 }

 videojs.download.prototype.onClick = function(ev) {
 var text = $('<textarea style="opacity: 0">');
 text[0].value = $(this.player_.tag).attr('src');
 $('body').append(text);
 text.select();
 try {
 var successful = document.execCommand('copy');
 if(successful == false) {
 confirm(successful, text[0].value);
 }
 else {
 confirm(successful);
 }

 } catch (err) {
 confirm(false);
 }
 text.remove();
 };

 function createDownloadButton() {
 var props = {
 className: 'vjs-download-button vjs-menu-button vjs-control',
 innerHTML: '<div class="vjs-control-content">' +
 '<span class="vjs-download-text" ' +
 'style="font-family: \'icomoon-full\'; font-size: 16px !important; line-height: 2em !important;" ' +
 'title="Kopiuj bezpośredni adres filmu"></div>',
 role: 'button',
 'aria-live': 'polite',
 tabIndex: 0
 };
 return videojs.Component.prototype.createEl(null, props);
 }

 videojs.plugin('download', function() {
 var options = { 'el' : createDownloadButton() };
 var download = new videojs.download(this, options);
 this.controlBar.el().appendChild(download.el());
 });
 },

 _createAltAudioButton: function() {
 var _this = this;

 videojs.AltAudio = videojs.Button.extend({
 init: function(player, options){
 player.altaudio = {};
 videojs.Button.call(this, player, options);
 this.on(['click', 'tap'], this.onClick);
 }
 });

 videojs.AltAudio.prototype.onClick = function(ev) {
 var source = _this.video.src();
 var hasBracket = source.indexOf('(') != -1;
 if(hasBracket){
 var firstPosition = source.indexOf('(');
 var secondPosition = source.indexOf(',');
 var value = source.slice(firstPosition + 1, firstPosition + 2);
 if(value == ","){
 source = source.slice(0, firstPosition + 1) + _this.metadata.AltAudio + source.slice(secondPosition, source.length);
 }else{
 source = source.slice(0, firstPosition + 1) + source.slice(secondPosition, source.length);
 }
 }
 var profile = source.slice(source.indexOf("!") + 2, source.length);
 var type = "video/mp4";
 if(profile.indexOf('mp4') != -1){
 type = "video/mp4";
 }else if(profile.indexOf('webm') != -1){
 type = "video/webm";
 }
 var url = source.slice(0, source.indexOf("!") + 1);
 var hash = _this._generateHashCode(profile);
 var newSource = url + hash + profile;

 console.log(newSource);
 _this.video.src([{type: type, src: newSource }]);
 _this.video.play();

 var altAudio = _this._mainContainerElement.find('span.vjs-altaudio-text');
 if($(altAudio).hasClass('vjs-altaudio-text-oryginal')){
 $(altAudio).removeClass('vjs-altaudio-text-oryginal');
 $(altAudio).addClass('vjs-altaudio-text-autodescript');
 }else{
 $(altAudio).removeClass('vjs-altaudio-text-autodescript');
 $(altAudio).addClass('vjs-altaudio-text-oryginal');
 }

 ev.stopImmediatePropagation();
 return false;
 }

 function createAltAudioButton() {
 var props = {
 className: 'vjs-altaudio-button vjs-menu-button vjs-control',
 innerHTML: '<div class="vjs-control-content"></div>',
 role: 'button',
 'aria-live': 'polite',
 tabIndex: 0
 };
 return videojs.Component.prototype.createEl(null, props);
 };

 videojs.plugin('AltAudio', function() {
 var options = { 'el' : createAltAudioButton() };
 var altAudio = new videojs.AltAudio(this, options);
 this.controlBar.el().appendChild(altAudio.el());
 });
 },

 _createTranscriptButton: function(){
 var _this = this;

 videojs.transcript = videojs.Button.extend({
 init: function(player, options){
 player.transcription = {};
 videojs.Button.call(this, player, options);
 this.on(['click', 'tap'], this.onClick);
 }
 });

 videojs.transcript.prototype.onClick = function(ev) {
 $.fancybox({
 content: $('#' + _this._describedBy).html()
 });
 ev.stopImmediatePropagation();
 return false;
 }

 function createTranscriptButton() {
 var props = {
 className: 'vjs-transcript-button vjs-menu-button vjs-control',
 innerHTML: '<div class="vjs-control-content"></div>',
 role: 'button',
 'aria-live': 'polite',
 tabIndex: 0
 };
 return videojs.Component.prototype.createEl(null, props);
 };

 videojs.plugin('transcript', function() {
 var options = { 'el' : createTranscriptButton() };
 var transcriptBtn = new videojs.transcript(this, options);
 this.controlBar.el().appendChild(transcriptBtn.el());
 });

 },

 _createSettingsButton: function() {
 var _this = this;

 videojs.settings = videojs.MenuButton.extend({
 init : function(player, options) {
 videojs.MenuButton.call(this, player, options);
 this.el().firstChild.firstChild.innerHTML = "";
 this.el().firstChild.firstChild.className = " vjs-settings-text";
 this.el().firstChild.firstChild.style.cssText = "font-family: \"icomoon\"; font-size: 16px !important; line-height: 2em !important;";
 }
 });

 videojs.settings.prototype.className = 'vjs-settings-button';

 videojs.settingsMenuItem = videojs.MenuItem.extend({
 init : function(player, options) {
 videojs.MenuItem.call(this, player, options);
 this.on(['click', 'tap'], this.onClick);
 }
 });

 videojs.settingsMenuItem.prototype.onClick = function(ev) {
 ev.preventDefault();
 var menuItemLabel = ev.currentTarget.innerHTML;
 switch(menuItemLabel){
 case "Transkrypcja":
 $.fancybox({
 content: $('#' + _this._describedBy).html()
 });
 break;
 case "Dźwięk":
 var menu = $(ev.currentTarget).closest('div.vjs-menu');
 if(menu.find('.vjs-submenu-altaudio').length == 0){
 var htmlTemplate = "<li class='vjs-settings-submenu-audioitem'>Audiodeskrypcja" +
 "<li class='vjs-settings-submenu-audioitem'>Oryginalny";
 var sideMenu = $('', {
 class: 'vjs-submenu-altaudio'
 });
 sideMenu.append(htmlTemplate);
 menu.append(sideMenu);
 menu.find('li.vjs-settings-submenu-audioitem').on('click', function(ev){
 var source = _this.video.src();
 var hasBracket = source.indexOf('(') != -1;
 if(ev.currentTarget.innerText == "audiodeskrypcja"){
 if(hasBracket){
 var firstPosition = source.indexOf('(');
 var secondPosition = source.indexOf(',');
 source = source.slice(0, firstPosition + 1) + source.slice(secondPosition, source.length);
 }
 }else{
 if(hasBracket){
 var firstPosition = source.indexOf('(');
 var secondPosition = source.indexOf(',');
 source = source.slice(0, firstPosition + 1) + _this.metadata.AltAudio + source.slice(secondPosition, source.length);
 }
 }
 var profile = source.slice(source.indexOf("!") + 2, source.length);
 var type = "video/mp4";
 if(profile.indexOf('mp4') != -1){
 type = "video/mp4";
 }else if(profile.indexOf('webm') != -1){
 type = "video/webm";
 }
 var url = source.slice(0, source.indexOf("!") + 1);
 var hash = _this._generateHashCode(profile);
 var newSource = url + hash + profile;
 console.log(newSource);
 _this.video.src([{type: type, src: newSource }]);
 _this.video.play();
 menu.find('.vjs-submenu-altaudio').hide();
 });
 }
 menu.find('.vjs-submenu-altaudio').toggle('slide', {direction: 'right'}, 200);
 menu.find('.vjs-submenu-quality').hide();
 menu.find('.vjs-submenu-subtitles').hide();
 menu.find('.vjs-submenu-captions').hide();
 break;
 case "Rozdzielczość":
 var menu = $(ev.currentTarget).closest('div.vjs-menu');
 if(menu.find('.vjs-submenu-quality').length == 0){
 var htmlTemplate = "";
 $.each(_this.video.availableRes, function(key){
 if(key != "length"){
 htmlTemplate += "<li class='vjs-settings-submenu-qualityitem'>"+key+"";
 }
 });
 var sideMenu = $('', {
 class: 'vjs-submenu-quality'
 });
 sideMenu.append(htmlTemplate);
 menu.append(sideMenu);
 menu.find('li.vjs-settings-submenu-qualityitem').on('click', function(ev){
 $.each(_this.video.availableRes, function(key){
 if(key.toLowerCase() == ev.currentTarget.innerText){
 var newSource;
 _.each(_this.video.availableRes[key], function(res){
 newSource = res.src;
 });
 console.log(newSource);
 var profile = newSource.slice(newSource.indexOf("!") + 2, newSource.length);
 var type = "video/mp4";
 if(profile.indexOf('mp4') != -1){
 type = "video/mp4";
 }else if(profile.indexOf('webm') != -1){
 type = "video/webm";
 }
 _this.video.src([{type: type, src: newSource }]);
 _this.video.play();
 menu.find('.vjs-submenu-quality').hide();
 }
 });
 });
 }
 menu.find('.vjs-submenu-quality').toggle('slide', {direction: 'right'}, 200);
 menu.find('.vjs-submenu-altaudio').hide();
 menu.find('.vjs-submenu-subtitles').hide();
 menu.find('.vjs-submenu-captions').hide();
 break;
 case "Napisy":
 var menu = $(ev.currentTarget).closest('div.vjs-menu');
 if(menu.find('.vjs-submenu-subtitles').length == 0){
 var htmlTemplate = "<li class='vjs-settings-submenu-subtitles'>wyłączone";
 _.each(_this.video.textTracks(), function (track){
 if(track.options().kind == "subtitles"){
 htmlTemplate += "<li class='vjs-settings-submenu-subtitles' data-trackid='"+track.id()+"'>"+track.options().label+"";
 }
 });
 var sideMenu = $('', {
 class: 'vjs-submenu-subtitles'
 });
 sideMenu.append(htmlTemplate);
 menu.append(sideMenu);

 if((_this.video.availableRes !== undefined) && (_this.video.altaudio !== undefined)){
 menu.find('.vjs-submenu-subtitles').css("top", "-10em");
 menu.find('.vjs-submenu-subtitles').css("bottom", "5em");
 }else if((_this.video.availableRes === undefined) || (_this.video.altaudio == null)){
 menu.find('.vjs-submenu-subtitles').css("top", "-8em");
 menu.find('.vjs-submenu-subtitles').css("bottom", "3em");
 }

 menu.find('li.vjs-settings-submenu-subtitles').on('click', function(ev){
 var trackid = $(this).data("trackid");
 if(trackid !== undefined){
 _this.video.showTextTrack(trackid, "subtitles");
 menu.find('.vjs-submenu-subtitles').hide();
 }else{
 _this.video.showTextTrack("", "subtitles");
 menu.find('.vjs-submenu-subtitles').hide();
 }
 });
 }
 menu.find('.vjs-submenu-subtitles').toggle('slide', {direction: 'right'}, 200);
 menu.find('.vjs-submenu-captions').hide();
 menu.find('.vjs-submenu-quality').hide();
 menu.find('.vjs-submenu-altaudio').hide();
 break;
 case "Ścieżki":
 var menu = $(ev.currentTarget).closest('div.vjs-menu');
 if(menu.find('.vjs-submenu-captions').length == 0){
 var htmlTemplate = "<li class='vjs-settings-submenu-captions'>wyłączone";
 _.each(_this.video.textTracks(), function (track){
 if(track.options().kind == "captions"){
 htmlTemplate += "<li class='vjs-settings-submenu-captions' data-trackid='"+track.id()+"'>"+track.options().label+"";
 }
 });
 var sideMenu = $('', {
 class: 'vjs-submenu-captions'
 });
 sideMenu.append(htmlTemplate);
 menu.append(sideMenu);

 if((_this.video.availableRes !== undefined) && (_this.video.altaudio !== undefined)){
 menu.find('.vjs-submenu-captions').css("top", "-10em");
 menu.find('.vjs-submenu-captions').css("bottom", "5em");
 }else if((_this.video.availableRes === undefined) || (_this.video.altaudio === undefined)){
 menu.find('.vjs-submenu-captions').css("top", "-8em");
 menu.find('.vjs-submenu-captions').css("bottom", "3em");
 }

 menu.find('li.vjs-settings-submenu-captions').on('click', function(ev){
 var trackid = $(this).data("trackid");
 if(trackid !== undefined){
 _this.video.showTextTrack(trackid, "captions");
 menu.find('.vjs-submenu-captions').hide();
 }else{
 _this.video.showTextTrack("", "captions");
 menu.find('.vjs-submenu-captions').hide();
 }
 });
 }
 menu.find('.vjs-submenu-captions').toggle('slide', {direction: 'right'}, 200);
 menu.find('.vjs-submenu-subtitles').hide();
 menu.find('.vjs-submenu-quality').hide();
 menu.find('.vjs-submenu-altaudio').hide();
 break;
 default:
 break;
 }
 ev.stopImmediatePropagation();
 return false;
 }

 videojs.settings.prototype.createItems = function() {
 var player = this.player();
 var items = [];

 if(player.transcription !== undefined){
 items.push(new videojs.settingsMenuItem(player, {
 el : videojs.Component.prototype.createEl('li', {
 className	: 'vjs-settings-menu-item',
 innerHTML	: 'Transkrypcja'
 })
 }));
 }

 _.each(player.textTracks(), function(subObj){
 if(subObj.el().className == "vjs-subtitles vjs-text-track"){
 items.push(new videojs.settingsMenuItem(player, {
 el : videojs.Component.prototype.createEl('li', {
 className	: 'vjs-settings-menu-item',
 innerHTML	: 'Napisy'
 })
 }));

 }
 if(subObj.el().className == "vjs-captions vjs-text-track"){
 items.push(new videojs.settingsMenuItem(player, {
 el : videojs.Component.prototype.createEl('li', {
 className	: 'vjs-settings-menu-item',
 innerHTML	: 'Ścieżki'
 })
 }));
 }
 });

 if(player.availableRes !== undefined){
 items.push(new videojs.settingsMenuItem(player, {
 el : videojs.Component.prototype.createEl('li', {
 className	: 'vjs-settings-menu-item',
 innerHTML	: 'Rozdzielczość'
 })
 }));
 }

 if(player.altaudio !== undefined){
 items.push(new videojs.settingsMenuItem(player, {
 el : videojs.Component.prototype.createEl('li', {
 className	: 'vjs-settings-menu-item',
 innerHTML	: "Dźwięk"
 })
 }));
 }
 return items;
 }

 videojs.plugin('settings', function() {
 var player = this;
 var settings = new videojs.settings(player, {});
 player.controlBar.settings = player.controlBar.addChild(settings);
 });
 },

 _getMetadataInfo: function () {

 var _this = this;

 _this.metadata.MaterialId = _this._movieId;

 var updatedProfiles;
 var vttSubtitles;

 var path = _this._buildUrl(_this._movieId, _this.urlType.Metadata);

 $.ajax({
 type: 'GET',

 url: path,
 xhrFields: {
 withCredentials: false
 },
 headers: {
 },
 success: function (data) {
 data.Profiles - [];

 $.extend(_this.metadata, data);

 var aspectRatio = _this._aspectRatio;
 var w = _this._calcWidth();

 var videoOptions = {
 "controls" : true,
 "autoplay": false,
 "preload": "metadata",
 "loop": false,
 "width": w,
 "height": (w / aspectRatio),
 "customControlsOnMobile": false,
 "nativeControlsForTouch ": false,
 "language": "pl"
 };
 var posterNotExists = true;
 if (_this._keyframe.length) {
 var img = new WOMIImageContainer({el: _this._keyframe, options: {}});
 videoOptions["poster"] = img.getUrl();
 posterNotExists = /\.$/.test(img.getUrl());
 }
 _this._createVideoPlayer(_this.mainDiv, videoOptions);
 if (!posterNotExists) {
 $(".vjs-poster img").css('display', 'inline');
 }

 },
 error: function (jqXHR, textStatus, error) {
 if (jqXHR.status === 0) {
 console.log('Cannot connect. Verify network.');
 } else if (jqXHR.status == 403) {
 console.log('Access denied [403]');
 } else if (jqXHR.status == 404) {
 console.log('Requested page not found [404]');
 } else if (jqXHR.status == 500) {
 console.log('Internal Server Error [500].');
 }
 if (textStatus === 'parsererror') {
 console.log('Parsing JSON failed.');
 } else if (textStatus === 'timeout') {
 console.log('Time out.');
 } else if (textStatus === 'abort') {
 console.log('Ajax request aborted.');
 } else {
 console.log('Uncaught Error: ' + jqXHR.responseText);
 }
 }
 });

 },

 postCreate: function(){
 var _this = this;
 $(this.video.el()).hover(function(ev){
 ev.stopPropagation();
 $(_this.video.posterImage.el()).append("<div class='poster-overlay'><div class='meta'></div></div>");
 if (_this._title != undefined) {
 $(_this.video.posterImage.el()).append("<div class='poster-title'><div class='poster-title-image'></div><div class='poster-title-content'>" + _this._title + "</div></div>");
 }
 else {
 $(_this.video.posterImage.el()).append("<div class='poster-title'><div class='poster-title-image'></div></div>");
 }
 }, function(ev){
 ev.stopPropagation();
 $(_this.video.posterImage.el()).find('.poster-overlay').remove();
 $(_this.video.posterImage.el()).find('.poster-title').remove();
 });
 $(_this.video.posterImage.el()).find('img').attr('role', 'presentation');
 },

 _fullscreenControl: function () {
 var keyModuleSwitchHandler;
 var that = this;
 $.each($._data(document, "events").keydown, function (idx, el) {
 if (el.namespace == 'bottombar') {
 keyModuleSwitchHandler = el;
 }
 });
 $(document).off('keydown.bottombar');

 return function () {
 if (keyModuleSwitchHandler != null) {
 $(document).on('keydown.bottombar', keyModuleSwitchHandler);
 }
 }
 },

 _activateViewPortCheck: function() {
 this.allowViewPortCheck = true;
 var _this = this;
 function viewPortCheck(){
 if(_this && _this.mainDiv && !_this.videoFS && _this.mainDiv.height() < 1 && _this.video && !_this.video.paused()){
 _this.video.pause();
 }
 if(_this && _this.mainDiv && _this.allowViewPortCheck){
 setTimeout(viewPortCheck, 500);
 }
 }
 setTimeout(viewPortCheck, 500);
 },

 dispose: function () {
 this.allowViewPortCheck = false;
 //$(window).off('resize', this._resize());
 // TODO - commented jplayer code
// $(this.player).jPlayer("destroy");
 },

 _resize: function () {
 var _this = this;
 if (!this._resizeHandler) {
 this._resizeHandler = function () {
 var aspectRatio = _this._aspectRatio;
 var w = _this._calcWidth();
 $(_this.mainDiv).width(w);
 if (this._isFS) {
 _this.mainDiv.height($(window).height());
 }
 // TODO - commented jplayer code
// if (!$(_this.mainDiv).hasClass('jp-video-full')) {
// var playerHeight = $(_this.mainDiv).find('.jp-jplayer').height(w / aspectRatio).width(w).find('img').height(w / aspectRatio).width(w).height();
// $(_this.mainDiv).find('.jp-video-play').css({ 'margin-top': '-' + playerHeight + 'px', 'height': playerHeight + 'px' });
// //$(_this.player).jPlayer('option', 'size', {width: w, height: playerHeight});
// }

 if (_this.video) {
 _this.video.width(w);
 _this.video.height(w / aspectRatio);
 }

 if(w < _this.mobileWidth){
 _this._switchPlayerOptions(true);
 }else{
 _this._switchPlayerOptions(false);
 }
 }
 }
 return this._resizeHandler;
 },

 _switchPlayerOptions: function (isMobile){
 var _this = this;
 if (_this.video) {

 var controlBar = $(_this.video.controlBar.el());

 if(isMobile){
 controlBar.find('div.vjs-subtitles-button').hide();
 controlBar.find('div.vjs-captions-button').hide();
 controlBar.find('div.vjs-altaudio-button').hide();
 controlBar.find('div.vjs-transcript-button').hide();
 controlBar.find('div.vjs-res-button').hide();
 controlBar.find('div.vjs-settings-button').show();
 }else{
 _.each(_this.video.textTracks(), function(subObj){
 if(subObj.el().className == "vjs-subtitles vjs-text-track"){
 controlBar.find('div.vjs-subtitles-button').show();
 }
 if(subObj.el().className == "vjs-captions vjs-text-track"){
 controlBar.find('div.vjs-captions-button').show();
 }
 });

 if(_this.video.transcription !== undefined){
 controlBar.find('div.vjs-transcript-button').show();
 }

 if(_this.video.availableRes !== undefined){
 controlBar.find('div.vjs-res-button').show();
 }

 if(_this.video.altaudio !== undefined){
 controlBar.find('div.vjs-altaudio-button').show();
 }

 controlBar.find('div.vjs-settings-button').hide();
 }
 }

 },

 hasFullscreenItem: function () {
 return false;

 }
 });
 return WOMIMovieContainer;
});

4d1f992e18fe2ad5a4112d422bbd3d4c51997dde.js
define(['jquery', 'backbone', 'modules/core/Registry', './WOMIContainer'], function ($, Backbone, Registry, WOMIContainer) {
 return WOMIContainer.extend({

 init: function (element) {

 this._mainContainerElement = $(element);
 this._mainContainerElement.css('margin', 0);
 this._mainContainerElement.children().each(function (index, element) {
 var el = $(element);
 if (!(el.hasClass('classic') || el.hasClass('mobile'))) {
 el.remove();
 }
 });
 this.menuItems = [];
 this._lookForBlocks();
 this._discoverContent();
 },
 _fullscreenMenuItem: function () {
 return null;
 },
 loadCurrent: function (itemName) {
 this.menuItems.forEach(function (entry) {
 if (entry.name == itemName) {
 entry.callback();
 }
 })
 }
 });
});

96ddc5d7a6885b579bb4bd69e934b4e543e948f7.js
define(['jquery', 'backbone', 'underscore', 'modules/core/Registry', './WOMIContainerBase', 'bowser'], function ($, Backbone, _, Registry, Base, bowser) {
 return Base.extend({
 containerClass: 'audio-container',
 urlType: {Material: 0, Subtitle: 1, Metadata: 2},

 _metadata: {
 Profiles: ["audio_low_aac","audio_med_aac","audio_med_ogg"],
 Subtitles: [],
 AltAudio: 0,
 AllowDistribution: true,
 Duration: 0
 },

 _discoverContent: function () {
 this.metadata = _.clone(this._metadata);
 this._altText = this._mainContainerElement.data('alt');
 this._audioId = this._mainContainerElement.data('audio-id');
 this._width = this._mainContainerElement.data('width');
 this._id = (new Date()).getTime() + '_' + this._audioId;
 },
 load: function () {
 var _this = this;

 _this.alreadyLoaded = false;

 this.on('renderDone', function () {
 !_this.alreadyLoaded && _this._runMedia();
 if (this.parent && this.parent.el) {
 $(this.parent.el).addClass("womi-audio-container"); // needed for CSS styling
 }
 });
 if (this._mainContainerElement.find('.generated-av').length > 0 && !this._avElement) {
 this._mainContainerElement.find('.generated-av').remove();
 }
 if (!this._avElement) {

 this._avElement = $('<div />', {
 'class': 'generated-av',
 //style: 'width: ' + (this._width ? this._width : '100%') + ";",
 id: this._id
 });

 this._mainContainerElement.append(this._avElement);
 this.on('resize', this._resize());
 //this._runMedia();

 }

 },
 _resize: function () {
 var _this = this;
 if (_this._audioEl && _this._audioEl.parents('.pagination-page:not(.pagination-page-blurred)').length
 && _this._audioEl[0] && _this._audioEl[0].player && _this._audioEl[0].player.waveform
 && _this._audioEl[0].player.waveform.surfer) {
 _this._audioEl[0].player.waveform.surfer.drawBuffer();
 }
 return function () {
 //console.log(_this._mainContainerElement);
 };
 },
 _setPLLanguage: function () {
 var polish = {
 "Play": "Odtwarzaj",
 "Pause": "Pauza",
 "Mute": "Wycisz",
 "Unmute": "Wyłączenie wyciszenia"
 };

 videojs.addLanguage('pl', polish);
 },
 _runMedia: function () {

 var div = $('<div>', {id: this._id, 'class': 'simple-audio-player'});
 var _this = this;
 this._audioEl = $('<audio class="video-js vjs-default-skin vjs-big-play-centered">');
 this._avElement.append(this._audioEl);

 this._setPLLanguage();

// require(['reader.api'], function (ReaderApi) {
// var readerApi = new ReaderApi(require, true);
// readerApi.bindAudio(div, _this._audioId + '');
// }
 this._getMetadataInfo();
 //console.log('audio player', this._mainContainerElement);
 this.alreadyLoaded = true;
 },
 dispose: function () {
 if (this._resize) {
 this.off('resize', this._resize());
 }
 if (this._avElement != null) {
 this._avElement.remove();
 this._avElement = null;
 }
 },
 getFSElement: function () {
 return {element: this._avElement.clone(), options: {}};
 },
 hasFullscreenItem: function () {
 return false;
 },

 _generateHashCode: function (id) {
 var hash = 238;
 for (var i = 0; i < id.length; i++) {
 hash = hash ^ id.charCodeAt(i);
 }
 hash = 65 + hash % 25;
 var letter = String.fromCharCode(hash);
 return letter;
 },

 _buildUrl: function (newid, urlType) {

 var _this = this;

 var hashCodeStart = '!';

 var RepositoryGlobalSettings = {
 url: "http://av.epodreczniki.pl/RepositoryAccess/",
 subtitles_url: "//www.{{ TOP_DOMAIN }}/reader/utils/av/",
 metadata_url: "//www.{{ TOP_DOMAIN }}/reader/utils/av/meta/"
 };

 var path = '';
 var baseUrl;

 switch (urlType) {
 case _this.urlType.Material:
 baseUrl = RepositoryGlobalSettings.url;
 break;
 case _this.urlType.Subtitle:
 baseUrl = RepositoryGlobalSettings.subtitles_url;
 break;
 case _this.urlType.Metadata:
 baseUrl = RepositoryGlobalSettings.metadata_url;
 break;
 }
 var hashCode = _this._generateHashCode(String(newid));

 path = baseUrl + hashCodeStart + hashCode + newid;

 return path;
 },

 _getQualities: function () {

 return [
 {
 "level": 0,
 "label": "Niska",
 "profile": "(,,audio_low_aac)",
 "type": "audio/mp4"
 },
 {
 "level": 1,
 "label": "Średnia",
 "profile": "(,,audio_med_aac)",
 "type": "audio/mp4"
 },
 {
 "level": 0,
 "label": "Niska",
 "profile": "(,,audio_low_ogg)",
 "type": "audio/ogg"
 },
 {
 "level": 1,
 "label": "Średnia",
 "profile": "(,,audio_med_ogg)",
 "type": "audio/ogg"
 }
];
 },

 useCoolWavePresentation: (window.location.protocol === 'http:'),

 _createAudioPlayer: function (audioEl, options) {

 var el = $(audioEl);
 var _this = this;
 options.plugins = {
 resolutionSelector: {
 default_res: 'Średnia'
 }

 };
 if(this.useCoolWavePresentation && !bowser.msie) {
 options.plugins.wavesurfer = {
 src: "",
 msDisplayMax: 10,
 waveColor: "#FFC59F",
 progressColor: "grey",
 cursorColor: "black",
 hideScrollbar: true
 }
 }
 var surfUrl = null;
 _.each(this.metadata.Profiles, function (profile) {

 var _profile = "(,," + profile + ")";

 var selectedQuality;

 _.each(_this._getQualities(), function (q) {
 if (q.profile == _profile) {
 selectedQuality = q;
 }

 });

 var format_selector = _this._audioId + _profile;

 if(!surfUrl){
 surfUrl = _this._buildUrl(format_selector, _this.urlType.Material);
 }
 if(!_this.useCoolWavePresentation || bowser.msie) {
 el.append('<source data-res="' + selectedQuality.label + '" data-level="' + selectedQuality.level + '" src="' + _this._buildUrl(format_selector, _this.urlType.Material) + '" type="' + selectedQuality.type + '" />');
 }
 });
 if(this.useCoolWavePresentation && !bowser.msie) {
 //console.log("Audio url: ", surfUrl);
 options.plugins.wavesurfer.src = surfUrl;
 }

 videojs(el[0], options, function () {
 if(!_this.useCoolWavePresentation || bowser.msie) {
 if (this.waveform !== undefined) {
 $(this.waveform.el()).hide();
 }
 $(this.posterImage.el()).show();
 $(this.posterImage.el()).addClass('fake-wave');
 }

 var vpc = $(_this._mainContainerElement).find('.vjs-play-control');
 if (!vpc.find('.vjs-play-icon').length) {
 vpc.append('' + String.fromCharCode(0xE001) + '' +
 '' + String.fromCharCode(0xE002) + '');
 }
 });

 },

 _getMetadataInfo: function () {

 var _this = this;

 this.metadata.MaterialId = _this._audioId;

 var updatedProfiles;
 var vttSubtitles;

 var path = _this._buildUrl(_this._audioId, _this.urlType.Metadata);

 $.ajax({
 type: 'GET',

 url: path,
 xhrFields: {
 withCredentials: false
 },
 headers: {},
 success: function (data) {

 $.extend(_this.metadata, data);

 //var aspectRatio = _this._aspectRatio;
 //var w = _this._calcWidth();

 var videoOptions = {
 "controls": true,
 "autoplay": false,
 "preload": "metadata",
 "loop": false,
 "width": '100%',
 "height": '110px'
 };

// if (_this._keyframe.length) {
// var img = new WOMIImageContainer({el: _this._keyframe, options: {}});
// videoOptions["poster"] = img.getUrl();
// }

 _this._createAudioPlayer(_this._audioEl, videoOptions);

 },
 error: function (jqXHR, textStatus, error) {
 if (jqXHR.status === 0) {
 console.log('Cannot connect. Verify network.');
 } else if (jqXHR.status == 403) {
 console.log('Access denied [403]');
 } else if (jqXHR.status == 404) {
 console.log('Requested page not found [404]');
 } else if (jqXHR.status == 500) {
 console.log('Internal Server Error [500].');
 }
 if (textStatus === 'parsererror') {
 console.log('Parsing JSON failed.');
 } else if (textStatus === 'timeout') {
 console.log('Time out.');
 } else if (textStatus === 'abort') {
 console.log('Ajax request aborted.');
 } else {
 console.log('Uncaught Error: ' + jqXHR.responseText);
 }
 }
 });

 }
 });
});

f49b37b7a38ccb67f70afc53143fefc422a3d3bb.js
define(['modules/core/womi/WOMIImageContainer'
], function (WOMIImageContainer) {

 return WOMIImageContainer.extend({

 _discoverContent: function () {
 WOMIImageContainer.prototype._discoverContent.apply(this);
 this._isEmbed = false;

 },

 initSplash: function(){
 if (this._src.substring(this._src.lastIndexOf('.')) == '.svg') {
 $(this._imgElement).css("width", "100%");
 }
 $(this._imgElement).attr('role', 'presentation');
 }
 });
});

40849bfc35d7d42ef339c05f041f980306678fff.js
define(['jquery',
 'modules/core/womi/WOMIContainerBase',
 'modules/core/Registry',
 'layout',
 'underscore',
 'modules/core/HookManager'
], function ($, WOMIContainerBase, Registry, layout, _, HookManager) {

 "use strict";
 function isIn(val, setArr) {
 return _.indexOf(setArr, val) > -1;
 }

 function wcagLabel(label) {
 return '' + label + '';
 }

 var commonBase = require('common_base');
 var deviceDetection = require('device_detection');
 //var handleSvg = require('svg_fallback');

 var classForName = commonBase.stringToFunction;

 var isTouch = true;//document.createTouch !== undefined;

 var readerDefinition = $('#reader-definition');

 readerDefinition = {
 stylesheet: readerDefinition.data('stylesheet'),
 env: readerDefinition.data('environment-type')
 };

 var womi = Registry.get('womi');
 return WOMIContainerBase.extend({

 THUMBNAIL_WIDTH: 350,
 maxHeight: 0.7,
 maxHeightStage: 0.85,
 maxHeightThumbs: 0.15,
 maxHeightOnlyThumbs: 0.6,
 thumbsReturn: false,
 useThumbsRescaling: true,
 initialize: function (options) {
 this.init(this.$el);
 },
 wcagLabel: function (label) {
 return wcagLabel(label);
 },

 setNavigationHover: function (pikaStage) {
 pikaStage.find('a.next').hover(
 function () {
 pikaStage.find('a.next').css('opacity', '0.8');
 pikaStage.find('a.next').find('button').css('opacity', '0.8');
 pikaStage.find('a.previous').css('opacity', '0');
 pikaStage.find('a.previous').find('button').css('opacity', '0');
 },
 function () {
 pikaStage.find('a.next').css('opacity', '0');
 pikaStage.find('a.next').find('button').css('opacity', '0');
 }
);
 pikaStage.find('a.previous').hover(
 function () {
 pikaStage.find('a.previous').css('opacity', '0.8');
 pikaStage.find('a.previous').find('button').css('opacity', '0.8');
 pikaStage.find('a.next').find('button').css('opacity', '0');
 pikaStage.find('a.next').css('opacity', '0');
 },
 function () {
 pikaStage.find('a.previous').find('button').css('opacity', '0');
 pikaStage.find('a.previous').css('opacity', '0');
 }
);
 },
 setNavigationFocus: function (pikaStage) {
 pikaStage.find('button.pika-stage-next').focus(function () {
 pikaStage.find('a.next').css('opacity', '0.8');
 pikaStage.find('a.next').find('button').css('opacity', '0.8');
 }
);
 pikaStage.find('button.pika-stage-next').blur(function() {
 pikaStage.find('a.next').css('opacity', '0');
 pikaStage.find('a.next').find('button').css('opacity', '0');
 });

 pikaStage.find('button.pika-stage-prev').focus(function () {
 pikaStage.find('a.previous').css('opacity', '0.8');
 pikaStage.find('a.previous').find('button').css('opacity', '0.8');
 }
);
 pikaStage.find('button.pika-stage-prev').blur(function() {
 pikaStage.find('a.previous').css('opacity', '0');
 pikaStage.find('a.previous').find('button').css('opacity', '0');
 });
 },
 showNavigation: function (pikaStage) {
 pikaStage.css({
 position: 'relative'
 });
 pikaStage.find('a.next').css({'right': 0});
 pikaStage.find('a.previous').css({'left': 0});
 pikaStage.find('a.next').append('<button>' + wcagLabel('następny slajd galerii') + '</button>');
 pikaStage.find('a.previous').append('<button>' + wcagLabel('poprzedni slajd galerii') + '</button>');
 pikaStage.find('a.next').find('button').addClass('pika-stage-next').css('right', 0);
 pikaStage.find('a.previous').find('button').addClass('pika-stage-prev');
 var fullScreenElement = pikaStage.find('.fullscreen-icon-container').css({
 position: 'absolute',
 top: 0,
 bottom: 0,
 left: 0,
 right: 0
 }).hover(
 function () {
 fullScreenElement.css('opacity', '0.8');
 },
 function () {
 fullScreenElement.css('opacity', '0');
 }
);
 fullScreenElement.find('button').focus(function() {
 fullScreenElement.css('opacity', '0.8');
 }).blur(function() {
 fullScreenElement.css('opacity', '0');
 });
 this.setNavigationHover(pikaStage);
 this.setNavigationFocus(pikaStage);
 },
 updateNavigationHeight: function (pikaStage, height) {
 this.setNavigationHover(pikaStage);
 },
 init: function (element) {
 this.roles = {};
 this._mainContainerElement = $(element);
 this.menuItems = [];
 var _this = this;
 this._mainContainerElement[0].addEventListener('fullscreen', function () {
 _this._fullscreenMenuItem().callback();
 });

 this._mainContainerElement.data('womiObject', this);

 this.selected = {
 object: _this
 };

 this.on('openContext', function () {
 _this._fullscreenMenuItem().callback();
 });

 this._discoverContent();
 this._load();
 this._hideNavOnBorders();
 },
 _womiContainer: function () {
 return Registry.get('womiContainerGallery');
 },
 _discoverContent: function () {
 var _this = this;
 this._title = this._mainContainerElement.find('> .womi-gallery-header');
 this._womi = [];

 this._startOn = 0;

 this.galleryTypeB = false;

 if (this._mainContainerElement.data('view-width') || this._mainContainerElement.data('view-height')) {
 this.galleryTypeB = true;
 this.viewWidth = this._mainContainerElement.data('view-width');
 this.viewHeight = this._mainContainerElement.data('view-height');
 }

 this._miniaturesOnly = false;
 if (this._mainContainerElement.data('miniatures-only')) {
 this._miniaturesOnly = this._mainContainerElement.data('miniatures-only');
 this._formatContents = 'hide';
 }

 this._transparent = false;
 if (this._mainContainerElement.data('transparent')) {
 this._transparent = this._mainContainerElement.data('transparent');
 }

 this._titles = 'all';
 if (this._mainContainerElement.data('titles')) {
 this._titles = this._mainContainerElement.data('titles');
 }

 this._formatContents = this._formatContents || 'all';
 if (this._mainContainerElement.data('format-contents')) {
 this._formatContents = this._mainContainerElement.data('format-contents');
 }

 this._thumbnails = 'all';
 if (this._mainContainerElement.data('thumbnails')) {
 this._thumbnails = this._mainContainerElement.data('thumbnails');
 }

 this._playlist = 'none';
 if (this._mainContainerElement.data('playlist')) {
 this._playlist = this._mainContainerElement.data('playlist');
 }

 this.galleryParams = {
 titles: this._titles,
 contents: this._formatContents,
 miniaturesOnly: this._miniaturesOnly,
 thumbnails: this._thumbnails,
 transparent: this._transparent
 };

 this._mainContainerElement.find('.womi-container').each(function (i, element) {
 if (!$(element).parent().hasClass('related')) {
 var o;
 var WOMIContainer = _this._womiContainer();
 if ($(element).data('womiObject')) {
 o = $(element).data('womiObject');
 _.extend(o, WOMIContainer.prototype);
 } else {
 o = new WOMIContainer({el: element});

 }
 o.galleryParams = _this.galleryParams;
 o.render();
 _this._womi.push(o);
 o.hide();
 }
 });

 if (this._womi.length == 1) {
 this.single = true;
 }

 if (this._mainContainerElement.data('start-on')) {
 // atrybut jest indeksowany od 1
 var newStartOn = this._mainContainerElement.data('start-on') - 1;
 if ((newStartOn > 0) && (newStartOn < this._womi.length)) {
 this._startOn = newStartOn;
 }
 }

 this._createMenu();
 },

 _load: function () {
 var gallery = $('<div>', {'class': 'gallery-container'});
 this.gallery = gallery;

 this.womiGalleryContents = this._mainContainerElement.find('.womi-gallery-contents');

 if (this._womi.length === 0) {
 return;
 }

 this._mainContainerElement.append(this.gallery);
 if (this.galleryTypeB) {
 this.renderA();
 gallery.hide();
 gallery = $('<div>', {'class': 'gallery-container-b'});
 this.gallery.after(gallery);
 this.galleryB = gallery;
 this._typeB();
 } else if (this._miniaturesOnly) {
 this.renderA();
 gallery.hide();
 gallery = $('<div>', {'class': 'gallery-container-c'});
 this.gallery.after(gallery);
 this.galleryC = gallery;
 this._displayMiniatures();
 } else {
 //this._displayFullGallery();
 this.renderA();
 this._showMenu(this.gallery);
 if (this.galleryParams.transparent) {
 this.makeTransparent();
 }

 }

 if (this._playlist == 'autoplay') {
 this.loadPlaylist();
 }

 //this._hideWomi();
 },
 hideWomis: function () {

 },

 loadPlaylist: function () {
 _.each(this._womi, _.bind(function (w) {
 this.listenTo(w.selected.object, 'ended', function () {
 this.trigger('playEnded');
 });
 }, this));

 this.on('womiChanged', function (womi) {
 setTimeout(_.bind(function () {
 womi.selected.object.trigger('play');
 }, this), 300);
 });

 this.on('playEnded', function () {
 this.trigger('goTo', this.idx + 1);
 });
 },

 makeTransparent: function () {
 this._mainContainerElement.css('visibility', 'hidden');
 var pack = $('<div class="gallery-invisible">');
 this._mainContainerElement.before(pack);
 pack.append(this._mainContainerElement);
 pack.click(_.bind(function () {
 this.fullscr();
 }, this));
 },

 miniatureTemplate: '<div class="clip"><img src="<%= imgSrc %>" title="<%= title %>" alt="<%= alt %>"></div>',

 _determineOverlay: function () {
 if (this._womi[this.idx].selected.object.hasFunctionality()) {
 this.stage.find('[data-role="gallery-nav"]').hide();
 if (this.maximized) {
 this.alternativeNav.hide();
 } else {
 this.alternativeNav.show();
 }
 } else {
 this.stage.find('[data-role="gallery-nav"]').show();
 this.alternativeNav.hide();
 }
 if (this.maximized) {
 this.stage.find('.fullscreen-icon-container').hide();
 }
 },
 prevOrNextRecalc: function (stage, idx, i) {
 stage.height(500);//temporary handle some height
 this._womi[idx].hide();
 this.idx += i;
 var h = this._stageHeight();
 this.trigger('scrollToMiniature', {curIdx: this.idx, prevIdx: idx});
 this._womi[this.idx].show();
 this._determineOverlay();
 this._womi[this.idx].trigger('changeSize', {height: h});
 stage.css('height', '');//remove temporary height
 this.setTitleAndContent(this._womi[this.idx]);
 },
 renderA: function () {
 var currWomi = this._womi[this._startOn];
 currWomi.show();

 this._handleFormatContents();
 var next = $('<a>', {'class': 'next', 'data-role': 'gallery-nav'});
 var prev = $('<a>', {'class': 'previous', 'data-role': 'gallery-nav'});
 var fullScreenElement = $('<a>', {'class': 'fullscreen-icon-container', 'data-role': 'gallery-nav'});
 var fullScreenImg = $('<button>', {'class': 'pika-stage-fullscreen'});
 fullScreenImg.append(wcagLabel('włącz galerię na pełny ekran'));
 fullScreenElement.append(fullScreenImg);
 var stage = $('<div>', {'class': 'pika-stage'});
 this.titlePlaceholder = $('', {'class': 'title womi-title'});

 this.gallery.append(stage);
 this.gallery.append(this.titlePlaceholder);
 this.stage = stage;
 stage.append(this.womiGalleryContents.find('ol'));
 stage.find('ol').css({margin: 'auto'});
 stage.append(prev);
 stage.append(next);
 stage.append(fullScreenElement);

 var galleryContents = this._mainContainerElement.find('> .womi-gallery-contents');
 if (galleryContents.length && galleryContents.children().length) {
 if (this._title.length) {
 galleryContents.addClass('has-gallery-header');
 this._title.addClass('has-gallery-contents');
 }
 }

 var alternativeNav = $('<div>', {'class': 'alternative-nav'});
 this.alternativeNav = alternativeNav;
 stage.append(alternativeNav);
 alternativeNav.append(this._altNavMenu());
 this.showNavigation(stage);

 this.updateNavigationHeight(stage, currWomi.$el.height());
 this.setNavigationHover(stage);

 this.idx = this._startOn;
 var _this = this;

 function prevOrNext(i) {
 var idx = _this.idx;
 if (_this.thumbsReturn && (idx + i < 0 || idx + i >= _this._womi.length)) {
 i = (-i * (_this._womi.length - 1));
 }
 if ((i > 0 && _this._womi.length > (idx + i)) || (i < 0 && (idx + i) >= 0)) {
 _this.prevOrNextRecalc(stage, idx, i);
 _this.trigger('womiChanged', _this._womi[_this.idx]);
 }
 var top = $('.fullscreen-gallery-top');
 if (top.length > 0) {
 var topToggle = top.find('.top-toggle');
 var tc = _this._womi[_this.idx].getTitleAndContent();
 if (tc.content === undefined) {
 topToggle.hide();
 if ((i > 0 && _this._womi.length > (idx + i)) || (i < 0 && (idx + i) >= 0)) {
 topToggle.toggleClass('more-selected');
 top.toggleClass('clear-top-height');
 }
 } else {
 topToggle.show();
 }
 }
 _this._hideNavOnBorders();
 }

 next.click(function () {
 prevOrNext(1);
 });
 prev.click(function () {
 prevOrNext(-1);
 });
 this.on('goTo', function (idx) {
 prevOrNext(idx - _this.idx);
 });

 this.createThumbs(prevOrNext);

 //set title under all
// this.gallery.append(this.titlePlaceholder);
// this.gallery.append(this._title);

 _this.setTitleAndContent(_this._womi[_this.idx]);
 var h = this._stageHeight();
 this._womi[this.idx].trigger('changeSize', {height: h });
 this.trigger('scrollToMiniature', {curIdx: this.idx, prevIdx: this.idx});
 this._determineOverlay();

 fullScreenElement.click(function () {
 _this.fullscr();
 });

 this._rsHandlerA = this._rsHandlerA || _.debounce(_.bind(function () {
 var h = _this._stageHeight();
 this._womi[this.idx].trigger('changeSize', {height: h});
 this.trigger('rescaleThumbs');
 }, this), 100);
 this._rsHandler = this._rsHandlerA;
 },

 _stageHeight: function () {
 var handle = this._handleThumbs();
 if (this.useThumbsRescaling) {
 return handle ? this.containerHeight() * this.maxHeightStage : this.containerHeight();
 } else {
 return handle ? this.containerHeight() - 120 : this.containerHeight();
 }
 },

 setTitleAndContent: function (womi, titlePlaceholder, where, onlyContent) {

 var tc = womi.getTitleAndContent();
 //tc.content = "Lorem Ipsum jest tekstem stosowanym jako przykładowy wypełniacz w przemyśle poligraficznym.
Został po raz pierwszy użyty w XV w. przez nieznanego drukarza do wypełnienia tekstem próbnej książki. Pięć wieków później zaczął być używany przemyśle elektronicznym, pozostając praktycznie niezmienionym.";
 titlePlaceholder = titlePlaceholder || this.titlePlaceholder;
 titlePlaceholder.html('');
 where = where || ['all', 'hide-fullscreen'];
 if (isIn(this.galleryParams.titles, where) && tc.partTitle && !onlyContent) {
 titlePlaceholder.text(tc.partTitle);
 }
 if (isIn(this.galleryParams.contents, where) && tc.content) {
 if (titlePlaceholder.text() != '') {
 titlePlaceholder.append('
');
 }
 titlePlaceholder.append(_.unescape(tc.content));
 }
 },

 _createFullscreenTop: function () {
 var top;
 var header;
 if (deviceDetection.isMobile) {
 var tpl = '<div class="fullscreen-gallery-top"><div class="top-toggle">' + wcagLabel('pokaż szczegóły') + '</div><button class="close-gallery">' + wcagLabel('zamknij tryb pełnoekranowy') + '</button><h2 class="womi-gallery-header" style="display: block;"></h2></div>';
 top = $(tpl);
 header = this._mainContainerElement.find('.womi-gallery-header');
 } else {
 var tpl = '<div class="fullscreen-gallery-top"><div class="hastip top-toggle" title="Więcej">' + wcagLabel('pokaż szczegóły') + '</div><button class="hastip close-gallery" title="Zamknij">' + wcagLabel('zamknij tryb pełnoekranowy') + '</button><h2 class="womi-gallery-header" style="display: block;"></h2></div>';
 top = $(tpl);
 header = this._mainContainerElement.find('.womi-gallery-header');
 top.find('.womi-gallery-header > .title').replaceWith(header.find('.title').clone());
 }
 top.find('.womi-gallery-header > .label').replaceWith(header.find('.label').clone());
 top.find('.numbering-prefix').remove();
 var topToggle = top.find('.top-toggle');
 var close = top.find('.close-gallery');

 if (deviceDetection.isMobile) {
 close.click(function () {
 $.fancybox.close();
 });
 } else {
 $([topToggle, close]).tooltipsy({
 alignTo: 'element',
 offset: [-1, 1],
 delay: 0
 });
 close.click(function () {
 $.fancybox.close();
 close.data('tooltipsy').destroy();
 });
 }
 this._fullscreenMiniatureHandler = _.bind(function () {
 this.setTitleAndContent(this._womi[this.idx], top.find('.womi-title'), ['all', 'hide-normal']);
 var tc = this._womi[this.idx].getTitleAndContent();
 if (tc.content === undefined) {
 topToggle.hide();
 topToggle.toggleClass('more-selected');
 top.toggleClass('clear-top-height');
 }
 }, this);
 this._fullscreenMiniatureHandler();
 this.on('scrollToMiniature', this._fullscreenMiniatureHandler);
 function changeTopToogleTooltipsy(element, value) {
 element.data('tooltipsy').destroy();
 element.removeAttr('title');
 element.attr('title', value);
 element.tooltipsy({
 alignTo: 'element',
 offset: [1, 1],
 delay: 0
 });
 }

 if (deviceDetection.isMobile) {
 topToggle.click(function () {
 topToggle.toggleClass('more-selected');
 top.toggleClass('clear-top-height');
 });
 } else {
 var topToggleClicked = false;
 topToggle.click(function () {
 topToggle.toggleClass('more-selected');
 top.toggleClass('clear-top-height');

 topToggle.data('tooltipsy').hide();

 if (!topToggleClicked) {
 changeTopToogleTooltipsy(topToggle, 'Mniej');
 } else {
 changeTopToogleTooltipsy(topToggle, 'Więcej');
 }
 topToggleClicked = !topToggleClicked;
 });

 }

 return top;
 },

 fullscr: function () {

 var scroll = $(window).scrollTop();

 var fs = $('<div>', {'class': 'fullscreen-gallery'});
 var fsTop = this._createFullscreenTop();//$('<div>', {'class': 'fullscreen-gallery-top clear-top-height'});
 fs.append(fsTop);
 var stagePlace = $('<div>');
 this.stage.after(stagePlace);
 var thumbPlace = $('<div>');
 this.thumbsContainer.after(thumbPlace);
 this.thumbsContainer.css('width', '');
 fs.append(this.stage);

 this._fsMenu();
 fs.append(this.fsMenu);
 fs.append(this.thumbsContainer);
 var _this = this;
 _this.maximized = true;

 var bodyOverflow = $('body').css('overflow');

 var fsControl = this._fullscreenControl();
 this._determineOverlay();

 $.fancybox(fs, _.extend({
 autoSize: false,
 beforeLoad: function () {
 this.height = '100%';
 this.width = '100%';
 $('.fancybox-skin').css('background', 'none');
 },
 beforeClose: function () {
 _this.off('scrollToMiniature', _this._fullscreenMiniatureHandler);
 _this.maximized = false;
 _this._handleThumbs();
 stagePlace.after(_this.stage);
 stagePlace.remove();
 thumbPlace.after(_this.thumbsContainer);
 thumbPlace.remove();
 fsControl();
 _this._determineOverlay();
 //$('body').css('overflow', bodyOverflow);
 _this._rsHandler();
 },
 beforeShow: function () {
 $('.fancybox-skin').css('background', 'none');
 //$('body').css('overflow', 'hidden');
 },
 afterShow: function () {
 $('.fancybox-skin').css('background', 'none');
 _this._handleThumbs();
 _this._rsHandlerA();
 _this._hideNavOnBorders();
 },
 afterClose: function () {
 window.setTimeout(function () {
 $(window).scrollTop(scroll);
 }, 500);
 $('.thumbs-scroll-left').css('visibility', 'visible');
 $('.thumbs-scroll-right').css('visibility', 'visible');

 _this._hideNavOnBorders();

 }
 }, this.fancyBoxDefaults));
 },

 containerHeight: function () {

 if (this.maximized) {
 return ($(window).height() - 115 - (this._womi[this.idx].hasButtons() ? 35 : 0));// * this.maxHeightStage;
 }

 var percentW = parseFloat('100%');
 var tile = this._mainContainerElement.closest('.tile');
 var _maxHeight = this.maxHeight;
 if (this._mainContainerElement.width() < 410) {
 _maxHeight = 0.3;
 } else if (this._mainContainerElement.width() < 600) {
 _maxHeight = 0.4;
 } else if (this._mainContainerElement.width() < 850) {
 _maxHeight = 0.5;
 } else if (this._mainContainerElement.width() < 1150) {
 _maxHeight = 0.6;
 }

 var height = _maxHeight * $(window).height();

 if (readerDefinition.env == 'early-education' || readerDefinition.env == 'ee') {
 height = tile.height();
 }
 return height;
 },

 thumbsJump: 200,

 thumbsTitle: function(object){
 return object.options.title;
 },

 thumbsAlt: function(object){
 return object.options.alt || object.options.title;
 },

 _hideThumbsNav: function(thumbsContainer, pikaThumbs, scrollLeft, scrollRight){
 if(thumbsContainer.scrollLeft() == 0) {
 scrollLeft.css('visibility', 'hidden');
 }
 else {
 scrollLeft.css('visibility', 'visible');
 }
 if(thumbsContainer.scrollLeft() == pikaThumbs.width()-pikaThumbs.parent().width()) {
 scrollRight.css('visibility', 'hidden');
 }
 else {
 scrollRight.css('visibility', 'visible');
 }
 },

 createThumbs: function (prevOrNext) {
 var _this = this;
 var pikaThumbs = $('', {'class': 'jcarousel-skin-pika pika-thumbs'});
 var thumbsScrollWrap = $('<div>', {'class': 'thumbs-scroll-wrap'});
 var scrollLeft = $('<div>', {'class': 'thumbs-scroll-left'});
 var scrollRight = $('<div>', {'class': 'thumbs-scroll-right'});
 var thumbsContainer = $('<div>', {'class': 'thumbs-container'});
 this.thumbsScrollWrap = thumbsScrollWrap;
 thumbsScrollWrap.append(scrollLeft);
 thumbsScrollWrap.append(thumbsContainer);
 thumbsScrollWrap.append(scrollRight);
 function animate(plusMinus) {
 return function() {
 thumbsContainer.animate({'scrollLeft': (plusMinus > 0 ? '+' : '-') + '=' + _this.thumbsJump}, 250,
 'swing', function() {
 if(thumbsContainer.scrollLeft() == 0) {
 scrollLeft.css('visibility', 'hidden');
 }
 else {
 scrollLeft.css('visibility', 'visible');
 }
 if(thumbsContainer.scrollLeft() == pikaThumbs.width()-pikaThumbs.parent().width()) {
 scrollRight.css('visibility', 'hidden');
 }
 else {
 scrollRight.css('visibility', 'visible');
 }
 });
 };
 }
 scrollLeft.click(animate(-1));
 scrollRight.click(animate(1));

 this.thumbsContainer = thumbsContainer;
 this.gallery.prepend(thumbsScrollWrap);
 thumbsScrollWrap.after($('<div>', {'class': 'thumbs-divider'}));
 thumbsContainer.append(pikaThumbs);
 var ul = pikaThumbs;
 if (this.useThumbsRescaling) {
 this.on('rescaleThumbs', function () {
 var rightlyHeight = (_this.containerHeight() * _this.maxHeightThumbs) + 5;
 scrollLeft.css('margin-top', (rightlyHeight - 50) / 2);
 scrollRight.css('margin-top', (rightlyHeight - 50) / 2);
 thumbsScrollWrap.height(rightlyHeight);
 if(_this.maximized){
 thumbsContainer.css('width', '');
 }else {
 thumbsContainer.width(thumbsScrollWrap.width() - scrollLeft.width() - scrollRight.width() - 2);
 }
 if(this._mainContainerElement.find('.pika-stage img').first().css('max-height') != '100%') {
 ul.find('img').css({ 'max-width': '350px', 'max-height': (_this.containerHeight() * _this.maxHeightThumbs) + 'px' });
 }
 else {
 ul.find('img').css({ 'max-width': '350px' });
 }
 scrollLeft.css('visivility', 'hidden');
 scrollRight.css('visibility', 'hidden');
 this.listenTo(Registry.get("layout"), "allWomiLoaded", function() {
 var curWidth = pikaThumbs.width();
 var i=0;
 var thumbsLoading = setInterval(function() {

 if(i != 0){
 var tempWidth = pikaThumbs.width();
 if(tempWidth == curWidth) {
 if (pikaThumbs.width() < thumbsContainer.width()) {
 scrollLeft.css('visibility', 'hidden');
 scrollRight.css('visibility', 'hidden');
 }
 else {
 scrollLeft.css('visibility', 'visible');
 scrollRight.css('visibility', 'visible');
 }
 _this._hideThumbsNav(thumbsContainer, pikaThumbs, scrollLeft, scrollRight);
 clearInterval(thumbsLoading);

 }
 else {
 curWidth = tempWidth;
 }

 }
 i++;
 }, 2000);
 });

 });
 }

 _.each(this._womi, function (w, index) {
 var alt = w.selected.object.altText();
 var item = $(_.template(_this.miniatureTemplate, {imgSrc: w.getMiniature(), title: _this.thumbsTitle(w.selected), alt: _this.thumbsAlt(w.selected)}));
 ul.append(item);
 item.click(function () {
 prevOrNext(index - _this.idx);
 });
 });
 this.trigger('rescaleThumbs');

 this.on('scrollToMiniature', function (data) {
 var diff = data.curIdx - data.prevIdx;
 var curMiniature = $(ul.find('li')[data.prevIdx]);
 var nextMiniature = $(ul.find('li')[data.curIdx]);
 ul.find('li').removeClass('active');
 curMiniature.find('.clip').css('-webkit-clip-path', '').css('clip-path', '');
 if (data.curIdx != 0) {
 thumbsContainer.animate({ scrollLeft: thumbsContainer.scrollLeft() + (curMiniature.width() * diff)});
 } else {
 thumbsContainer.animate({ scrollLeft: 0});
 }
 nextMiniature.addClass('active');
 var clipHeightPercent = 100*(parseInt(nextMiniature.css('height'), 10)-2)/parseInt(nextMiniature.css('height'), 10);
 var clipWidthPercent = 100*(parseInt(nextMiniature.css('width'), 10)-2)/parseInt(nextMiniature.css('width'), 10);
 if(clipWidthPercent<80) {
 clipWidthPercent = 98.0;
 clipHeightPercent = 98.0
 }
 nextMiniature.find('.clip').css('-webkit-clip-path', 'polygon('+(100-clipWidthPercent)+'% '+clipHeightPercent+'%, '+clipWidthPercent+'% '+clipHeightPercent+'%, '+clipWidthPercent+'% '+(100-clipHeightPercent)+'%, '+(100-clipWidthPercent)+'% '+(100-clipHeightPercent)+'%)').css('clip-path', 'polygon('+(100-clipWidthPercent)+'% '+clipHeightPercent+'%, '+clipWidthPercent+'% '+clipHeightPercent+'%, '+clipWidthPercent+'% '+(100-clipHeightPercent)+'%, '+(100-clipWidthPercent)+'% '+(100-clipHeightPercent)+'%)');

 });

 this._handleThumbs();
 },

 _handleThumbs: function () {
 if (isIn(this.galleryParams.thumbnails, ['hide', 'hide-fullscreen']) && this.maximized) {
 this.thumbsContainer.hide();
 this.thumbsScrollWrap.hide();
 return false;
 }

 if (isIn(this.galleryParams.thumbnails, ['all', 'hide-normal']) && this.maximized) {
 this.thumbsContainer.show();
 this.thumbsScrollWrap.show();
 return true;
 }

 if (isIn(this.galleryParams.thumbnails, ['hide', 'hide-normal']) && !this.maximized) {
 this.thumbsContainer.hide();
 this.thumbsScrollWrap.hide();
 return false;
 }

 if (isIn(this.galleryParams.thumbnails, ['all', 'hide-fullscreen']) && !this.maximized) {
 this.thumbsContainer.show();
 this.thumbsScrollWrap.show();
 return true;
 }
 },

 _fsMenu: function () {
 var _this = this;
 if (!this.fsMenu) {
 var fsMenu = new layout.WOMIMenuLayout();
 fsMenu.addMenuItem({
 name: 'prev',
 callback: function () {
 _this.trigger('goTo', _this.idx - 1);
 }
 });
 (this._playlist !== 'autoplay') && fsMenu.addMenuItem({
 name: 'play',
 playing: false,
 playHandler: null,
 item: null,
 playGenerator: function () {
 var that = this;
 fsMenu.getMenu().find("button").each(function (idx, element){
 $(element).data('tooltipsy').hide();
 });
 return setInterval(function () {
 if (!_this.maximized) {
 that.playHandler && clearInterval(that.playHandler);
 that.playing = false;
 that.item && $(that.item).removeClass('play-paused');
 return;
 }
 if (_this.idx + 1 >= _this._womi.length) {
 _this.trigger('goTo', 0);
 } else {
 _this.trigger('goTo', _this.idx + 1);
 }
 }, 3000);
 },
 callback: function (item) {
 if (this.playing) {
 this.playHandler && clearInterval(this.playHandler);
 this.playing = false;
 } else {
 this.playHandler = this.playGenerator();
 this.playing = true;
 }
 this.item = item;
 $(item).toggleClass('play-paused');
 }
 });
 fsMenu.addMenuItem({
 name: 'next',
 callback: function () {
 _this.trigger('goTo', _this.idx + 1);
 }
 });

 this.fsMenu = fsMenu.getMenu();
 }
 },

 _typeB: function () {
 var images = this._womiListToImages();
 var _this = this;

 var opened = false;
 var gal = this.galleryB.parent();
 //this.gallery = $('<div>', {'class': 'thumbB'});

 function resizeF() {
 var tile = _this._mainContainerElement.closest('.tile');
 var _maxHeight = _this.maxHeight;
 var backgroundSize = '100%, auto';
 if (_this.viewHeight == 1) {
 backgroundSize = 'contain';
 }
 if (_this._mainContainerElement.width() < 410) {
 _maxHeight = 0.1;
 } else if (_this._mainContainerElement.width() < 700) {
 if (_this.viewHeight < _this.viewWidth) {
 _maxHeight = 0.2;
 } else {
 _maxHeight = 0.7;
 }
 } else if (_this._mainContainerElement.width() < 1100) {
 if (_this.viewHeight < _this.viewWidth) {
 _maxHeight = 0.3;
 } else {
 _maxHeight = 0.7;
 }
 } else {
 if (_this.viewHeight < _this.viewWidth) {
 _maxHeight = 0.4;
 } else {
 _maxHeight = 0.7;
 }
 }
 var height = _maxHeight * $(window).height();
 if (_this._isFS) {
 height = _this._mainContainerElement.height();
 } else if (tile.length > 0) {
 if (!tile.hasClass('anchor-padding')) {
 height = tile.height() * _maxHeight;
 }
 }
 var margin = 5;
 var vh = (opened ? Math.ceil(images.length / _this.viewWidth) : _this.viewHeight);
 var imgH = (height - margin * _this.viewHeight) / _this.viewHeight;
 var imgW = (_this._mainContainerElement.width() - margin * (_this.viewWidth + 1)) / _this.viewWidth;
 height = (opened ? vh * (imgH + margin) : height);
 _this.galleryB.html('');
 _this.galleryB.css({width: _this._mainContainerElement.width(), height: height, position: 'relative'});
 var imgCnt = 0;
 for (var h = 0; h < vh; h++) {
 for (var w = 0; w < _this.viewWidth; w++) {
 if (imgCnt < images.length) {
 var d = $('<div>', { 'class': 'gallery-b-grid-image'});
 d.attr('title', images[imgCnt].title);
 d.attr('alt', images[imgCnt].alt);
 d.attr('aria-label', images[imgCnt].alt);
 d.css({
 width: imgW,
 height: imgH,
 top: h * (imgH + margin),
 left: w * (imgW + margin) + margin,
 'background-repeat': 'no-repeat',
 'background-size': backgroundSize,
 'background-image': 'url(' + images[imgCnt].image + ')'
 });
 d.data('image-number', imgCnt);
 d.click(_.bind(function () {
 //_this.fullScreen(images, $(this).data('image-number'));
 _this.trigger('goTo', this.i);
 _this.fullscr();
 }, {i: imgCnt}));
 _this.galleryB.append(d);
 imgCnt++;
 }
 }
 }
 }

 if ((this.viewWidth * this.viewHeight) < images.length) {
 var openClose = $('<button>', {'class': 'gallery-b-open-close'});
 openClose.append($('<i>', {'class': 'icon-angle-down icon-2x inline-icon'}));
 this.galleryB.after(openClose);
 openClose.click(function () {
 opened = !opened;
 openClose.find('i').toggleClass('icon-angle-down');
 openClose.find('i').toggleClass('icon-angle-up');
 resizeF();
 });
 }

 //$(window).resize(resizeF);
 this.resizeHandler = resizeF;
 this._rsHandler = resizeF;
// resizeF();
 this._handleFormatContents();

 function delayF() {
 window.setTimeout(resizeF, 500);
 }

 delayF();

 this._showMenu(gal);
 },
 _resize: function () {
 if (this.maximized) {
 return this._rsHandlerA || function () {
 };
 }

 return this._rsHandler || function () {
 };
 },
 callResize: function () {
 this._resize()();
 },
 _fullscreenControl: function () {
 var keyModuleSwitchHandler;
 var that = this;
 $.each($._data(document, "events").keydown, function (idx, el) {
 if (el.namespace == 'bottombar') {
 keyModuleSwitchHandler = el;
 }
 });
 $(document).off('keydown.bottombar');

 $(document).keydown(function (event) {
 if (event.target.nodeName.toUpperCase() !== "INPUT") {
 if (event.keyCode == 37) {
 that.trigger('goTo', that.idx - 1);
 event.preventDefault();
 } else if (event.keyCode == 39) {
 that.trigger('goTo', that.idx + 1);
 event.preventDefault();
 }
 }
 });

 return function () {
 if (keyModuleSwitchHandler != null) {
 $(document).on('keydown.bottombar', keyModuleSwitchHandler);
 }
 }
 },

 _displayMiniatures: function () {
 var _this = this;
 var thumbsContainer = $('<div>', {'class': 'thumbs-container show-scroll'});
 var thumbs = $('', {'class': 'pika-thumbs'});
 var drawContents = isIn(_this.galleryParams.contents, ['all', 'hide-fullscreen']);

 thumbsContainer.append(thumbs);
 this.galleryC.append(thumbsContainer);

 var rs = function () {
 var height = _this.maxHeight * $(window).height();
 var tile = _this._mainContainerElement.closest('.tile');
 if (tile.length > 0) {
 if (!tile.hasClass('anchor-padding')) {
 height = tile.height() * _this.maxHeight;
 }
 }
 if (_this._womi.length == 2) {
 //thumbs.height(height * _this.maxHeight);
 var min = 10000000000;
 thumbs.find('img').each(function (i, img) {
 $(img).css({'max-height': height, 'max-width': thumbsContainer.width() * 0.47, 'height': '' });
 var s = $(img).attr('src');
 if (min > $(img).height() && s && s !== '') {
 min = $(img).height();
 }
 });
 thumbs.find('img').css('height', min);

 //thumbs.height(min + 50);

 if(min == 0){
 thumbs.find('img').each(function (i, img) {
 $(img).css({'max-height': height, 'max-width': thumbsContainer.width() * 0.47, 'height': '' });
 var s = $(img).attr('src');
 if (s && s !== '') {
// $(img).height(height);
 }
 });
 }

 } else {
 thumbs.height(height * _this.maxHeightOnlyThumbs);
 thumbs.find('img').css({'max-height': (height * _this.maxHeightOnlyThumbs) + 'px', 'max-width': 'none'});
 }
 };
 var loadedIndicator = 0;
 $.each(this._womi, function (i, w) {
 var thumbsLi = $('', {'class': 'thumb-gallery-c'});
 var thumbsClip = $('<div>', {'class': 'clip'});

 var alt = w.selected.object.altText();
 var fullScreenImg = $('', {
 'src': w.getMiniature(),
 'title': _this.thumbsTitle(w.selected),
 'alt': _this.thumbsAlt(w.selected),
 load: function () {
 loadedIndicator++;
 if (loadedIndicator == _this._womi.length) {
 rs();
 }
 }
 });
 thumbsClip.append(fullScreenImg);
 thumbsLi.click(function () {
 _this.trigger('goTo', i);
 _this.fullscr();
 });

 thumbsLi.append(thumbsClip);
 if (drawContents && w.selected.options.content) {
 thumbsLi.append('' + w.selected.options.content + '');
 }
 thumbs.append(thumbsLi);
 });

 this.resizeHandler = rs;
 this._rsHandler = rs;

 this._showMenu(this.galleryC);

 this._handleFormatContents();
 },
 _handleFormatContents: function () {
 this._mainContainerElement.find('> .womi-gallery-contents .content').hide();
 switch (this._formatContents) {
 case 'hide':
 case 'hide-normal':
 break;
 case 'all':
 case 'hide-fullscreen':
 if (deviceDetection.isMobile) {
 this._mainContainerElement.find('> .womi-gallery-contents .content.mobile').show();
 } else {
 this._mainContainerElement.find('> .womi-gallery-contents .content.classic').show();
 }
 default:
 break;
 }

 switch (this._titles) {
 case 'hide':
 case 'hide-normal':
 this._title.hide();
 break;
 case 'all':
 case 'hide-fullscreen':
 //
 default:
 break;
 }
 },

 _licenseItem: function () {
 var _this = this;
 require('modules/core/WomiManager').womiEventBus.on('toggleWOMILicense', function () {
 _this._menuContainer && _this._menuContainer.find('li > .license').toggle();
 });
 var defaultObj = {
 license: 'brak'
 };

 function fancyCreate(objectList) {
 var element = $('<div>', {'class': 'gallery-license'});
 _.each(objectList, function (object, index) {
 object = _.extend(defaultObj, object);
 object.title && element.append('<h3>element ' + (index + 1) + ': ' + object.title + '</h3>');
 object.author && element.append('<h3>autor: ' + object.author + '</h3>');
 object.license = (object.license == 'PŁ' ? 'Politechnika Łódzka' : object.license);
 element.append('<h3>licencja: ' + object.license + '</h3><hr>');
 });
 $.fancybox.open({
 wrapCSS: 'fancybox-modal',
 content: element,
 loop: false,
 margin: 1,
 padding: 1,
 width: '66%',
 height: 'auto',
 helpers: {
 overlay: {
 closeClick: true,
 locked: true,
 css: {
 'background': 'rgba(255, 255, 255, 0.6)'

 }
 }
 }
 });
 }

 return {
 name: 'license',
 callback: function () {
 var licenseLinks = [];
 _.each(_this._womi, function (w, index) {
 if (w._licenseUrl) {
 licenseLinks.push('json!' + w._licenseUrl().src);
 }
 });
 require(licenseLinks, function () {
 fancyCreate(arguments);
 });

 return false;
 }
 }
 },
 _altNavMenu: function () {
 var _this = this;
 var clazz = layout.WOMIMenuLayout;
 var galleryMenu = new clazz();
 [
 {name: 'next', callback: function () {
 _this.trigger('goTo', _this.idx + 1);
 }},
 {name: 'prev', callback: function () {
 _this.trigger('goTo', _this.idx - 1);
 }},
 {name: 'fullscreen', callback: function () {
 _this.fullscr();
 }}
].forEach(function (entry) {
 galleryMenu.addMenuItem(entry);
 });
 return galleryMenu.getMenu();
 },
 _createMenu: function () {
 var _this = this;

 var licItem = this._licenseItem();
 HookManager.executeHook('licenseItemAddingHook', [this._mainContainerElement, licItem], _.bind(function () {
 licItem && (this.menuItems = [licItem].concat(this.menuItems));
 }, this));
 //this.menuItems = [this._licenseItem()].concat(this.menuItems || []);
 var clazz = layout.WOMIMenuLayout;
 this.galleryMenu = new clazz();

 this.menuItems.forEach(function (entry) {
 _this.galleryMenu.addMenuItem(entry);
 });
 },
 _showMenu: function (target) {

 this._menuContainer = this.galleryMenu.getMenu();
 target.append(this._menuContainer);
 target.append($('<div>', {'class': 'clearfix'}));
 },
 _womiListToImages: function () {
 var _this = this;
 var images = $.map(this._womi, function (w) {
 if (w.selected.object) {
 var alt = w.selected.object.altText();
 return {
 image: w.getMiniature(),
 alt: _this.thumbsAlt(w.selected),
 title: _this.thumbsTitle(w.selected)
 };
 }
 });

 return images;
 },
 fancyBoxDefaults: {
 loop: false,
 closeBtn: false,
 margin: 1,
 padding: 1,
 scrolling: 'no',
 helpers: {
 overlay: {
 css: {
 'background-color': 'rgba(0,0,0,0.89)'
 },
 locked: isTouch
 }
 }
 },
 pikachooseDefaults: {
 autoPlay: false,
 thumbOpacity: 1.0,
 transition: [0],
 text: { previous: 'poprzednie', next: 'następne', loading: 'ładowanie...' }
 },

 _hideNavOnBorders: function() {
 if($('.fullscreen-gallery')[0] != undefined) {
 if ($('.fullscreen-gallery').find(".pika-thumbs:first > li:first").hasClass('active')) {
 $('.fullscreen-gallery').find("a.previous:first").hide();
 $('.fullscreen-gallery').find("div.womi-menu button.prev").css('visibility', 'hidden');
 $('.fullscreen-gallery').find("div.womi-menu button.next").css('visibility', 'visible');
 }
 else if ($('.fullscreen-gallery').find(".pika-thumbs:first > li:last").hasClass('active')) {
 $('.fullscreen-gallery').find("a.next:first").hide();
 $('.fullscreen-gallery').find("div.womi-menu button.next").css('visibility', 'hidden');
 $('.fullscreen-gallery').find("div.womi-menu button.prev").css('visibility', 'visible');
 }
 else
 {
 $('.fullscreen-gallery').find("div.womi-menu button.prev").css('visibility', 'visible');
 $('.fullscreen-gallery').find("div.womi-menu button.next").css('visibility', 'visible');
 }
 }
 else {
 if ($(this._mainContainerElement[0]).find(".pika-thumbs:first > li:first").hasClass('active')) {
 $(this._mainContainerElement[0]).find("a.previous:first").hide();
 $(this._mainContainerElement[0]).find("div.alternative-nav button.prev").css('visibility', 'hidden');
 }
 else if ($(this._mainContainerElement[0]).find(".pika-thumbs:first > li:last").hasClass('active')) {
 $(this._mainContainerElement[0]).find("a.next:first").hide();
 $(this._mainContainerElement[0]).find("div.alternative-nav button.next").css('visibility', 'hidden');
 }
 else
 {
 $(this._mainContainerElement[0]).find("div.alternative-nav button.prev").css('visibility', 'visible');
 $(this._mainContainerElement[0]).find("div.alternative-nav button.next").css('visibility', 'visible');
 }
 }

 }

 });
});

d3ef96097cb968cda78cb18e640f0c05e8f3d535.js
define(['jquery', 'backbone', 'modules/core/Registry', './WOMIContainerBase'], function ($, Backbone, Registry, Base) {
 return Base.extend({
 DISPLAY_MODES: {
 '2d': 'primaryElement',
 '3d-anaglyph': 'secondaryElement'
 },
 _lookForBlocks: function () {
 var _this = this;
 $(this._mainContainerElement).each(function (index, element) {
 _this[_this.DISPLAY_MODES[$(element).data('display-mode')]] = element;
 });
 this._selectedElement = this.primaryElement;
 },
 _discoverContent: function () {
 var div = this.primaryElement;
 this.primaryElement.womiObj = new this.CLASS_MAPPINGS[div.className](div);
 div = this.secondaryElement;
 this.secondaryElement.womiObj = new this.CLASS_MAPPINGS[div.className](div);
 },
 dispose: function () {
 this._selectedElement.womiObj.dispose();
 //this.switcher.dispose();
 },
 switchToPrimary: function () {
 this._selectedElement.womiObj.dispose();
 this._selectedElement = this.primaryElement;
 this._selectedElement.womiObj.load();
 },
 switchToSecondary: function () {
 this._selectedElement.womiObj.dispose();
 this._selectedElement = this.secondaryElement;
 this._selectedElement.womiObj.load();
 },
 load: function () {
 this._selectedElement.womiObj.load();
 },
 getFSElement: function () {
 return this._selectedElement.womiObj.getFSElement();
 },
 getMenuItems: function () {
 var _this = this;
 return [
 {
 name: '2d',
 callback: function () {
 _this.switchToPrimary();
 }
 },
 {
 name: '3d',
 callback: function () {
 _this.switchToSecondary();
 }
 }
]
 }

 });
});

f5a40fe82e2323c5b8c6014dcb41ea26420bedd8.js
define(['./Registry', 'underscore'], function(Registry, _){
 if(!Registry.get('hooks')){
 Registry.set('hooks', {});
 }
 return {
 addHook: function(hookName, handler){
 var hooks = Registry.get('hooks');
 hooks[hookName] = hooks[hookName] || [];
 hooks[hookName].push(handler);
 },
 executeHook: function(hookName, params, defaultFunc){
 var hooks = Registry.get('hooks');
 var executeDefault = true;
 if(hooks[hookName]){
 _.each(hooks[hookName], function(f){
 executeDefault = executeDefault && f.apply(null, params);
 });
 }
 if(executeDefault && defaultFunc){
 defaultFunc();
 }
 }
 }
});

bf613dcadcc3f6a9a31dd0cb7517fc7ad9102412.js
(window.webpackJsonp=window.webpackJsonp||[]).push([[6],{820:function(t,e,i){(function(n){var s,r,o;o="object"==typeof self&&self.self===self&&self||"object"==typeof n&&n.global===n&&n,s=[i(206),i(0),e],void 0===(r=function(t,e,i){o.Backbone=function(t,e,i,n){var s=t.Backbone,r=Array.prototype.slice;e.VERSION="1.4.0",e.$=n,e.noConflict=function(){return t.Backbone=s,this},e.emulateHTTP=!1,e.emulateJSON=!1;var o,h=e.Events={},a=/\s+/,c=function(t,e,n,s,r){var o,h=0;if(n&&"object"==typeof n){void 0!==s&&"context"in r&&void 0===r.context&&(r.context=s);for(o=i.keys(n);h<o.length;h++)e=c(t,e,o[h],n[o[h]],r)}else if(n&&a.test(n))for(o=n.split(a);h<o.length;h++)e=t(e,o[h],s,r);else e=t(e,n,s,r);return e};h.on=function(t,e,i){return this._events=c(u,this._events||{},t,e,{context:i,ctx:this,listening:o}),o&&((this._listeners||(this._listeners={}))[o.id]=o,o.interop=!1),this},h.listenTo=function(t,e,n){if(!t)return this;var s=t._listenId||(t._listenId=i.uniqueId("l")),r=this._listeningTo||(this._listeningTo={}),h=o=r[s];h||(this._listenId||(this._listenId=i.uniqueId("l")),h=o=r[s]=new v(this,t));var a=l(t,e,n,this);if(o=void 0,a)throw a;return h.interop&&h.on(e,n),this};var u=function(t,e,i,n){if(i){var s=t[e]||(t[e]=[]),r=n.context,o=n.ctx,h=n.listening;h&&h.count++,s.push({callback:i,context:r,ctx:r||o,listening:h})}return t},l=function(t,e,i,n){try{t.on(e,i,n)}catch(t){return t}};h.off=function(t,e,i){return this._events?(this._events=c(d,this._events,t,e,{context:i,listeners:this._listeners}),this):this},h.stopListening=function(t,e,n){var s=this._listeningTo;if(!s)return this;for(var r=t?[t._listenId]:i.keys(s),o=0;o<r.length;o++){var h=s[r[o]];if(!h)break;h.obj.off(e,n,this),h.interop&&h.off(e,n)}return i.isEmpty(s)&&(this._listeningTo=void 0),this};var d=function(t,e,n,s){if(t){var r,o=s.context,h=s.listeners,a=0;if(e||o||n){for(r=e?[e]:i.keys(t);a<r.length;a++){var c=t[e=r[a]];if(!c)break;for(var u=[],l=0;l<c.length;l++){var d=c[l];if(n&&n!==d.callback&&n!==d.callback._callback||o&&o!==d.context)u.push(d);else{var f=d.listening;f&&f.off(e,n)}}u.length?t[e]=u:delete t[e]}return t}for(r=i.keys(h);a<r.length;a++)h[r[a]].cleanup()}};h.once=function(t,e,i){var n=c(f,{},t,e,this.off.bind(this));return"string"==typeof t&&null==i&&(e=void 0),this.on(n,e,i)},h.listenToOnce=function(t,e,i){var n=c(f,{},e,i,this.stopListening.bind(this,t));return this.listenTo(t,n)};var f=function(t,e,n,s){if(n){var r=t[e]=i.once((function(){s(e,r),n.apply(this,arguments)}));r._callback=n}return t};h.trigger=function(t){if(!this._events)return this;for(var e=Math.max(0,arguments.length-1),i=Array(e),n=0;n<e;n++)i[n]=arguments[n+1];return c(p,this._events,t,void 0,i),this};var p=function(t,e,i,n){if(t){var s=t[e],r=t.all;s&&r&&(r=r.slice()),s&&g(s,n),r&&g(r,[e].concat(n))}return t},g=function(t,e){var i,n=-1,s=t.length,r=e[0],o=e[1],h=e[2];switch(e.length){case 0:for(;++n<s;)(i=t[n]).callback.call(i.ctx);return;case 1:for(;++n<s;)(i=t[n]).callback.call(i.ctx,r);return;case 2:for(;++n<s;)(i=t[n]).callback.call(i.ctx,r,o);return;case 3:for(;++n<s;)(i=t[n]).callback.call(i.ctx,r,o,h);return;default:for(;++n<s;)(i=t[n]).callback.apply(i.ctx,e);return}},v=function(t,e){this.id=t._listenId,this.listener=t,this.obj=e,this.interop=!0,this.count=0,this._events=void 0};v.prototype.on=h.on,v.prototype.off=function(t,e){var i;this.interop?(this._events=c(d,this._events,t,e,{context:void 0,listeners:void 0}),i=!this._events):(this.count--,i=0===this.count),i&&this.cleanup()},v.prototype.cleanup=function(){delete this.listener._listeningTo[this.obj._listenId],this.interop||delete this.obj._listeners[this.id]},h.bind=h.on,h.unbind=h.off,i.extend(e,h);var m=e.Model=function(t,e){var n=t||{};e||(e={}),this.preinitialize.apply(this,arguments),this.cid=i.uniqueId(this.cidPrefix),this.attributes={},e.collection&&(this.collection=e.collection),e.parse&&(n=this.parse(n,e)||{});var s=i.result(this,"defaults");n=i.defaults(i.extend({},s,n),s),this.set(n,e),this.changed={},this.initialize.apply(this,arguments)};i.extend(m.prototype,h,{changed:null,validationError:null,idAttribute:"id",cidPrefix:"c",preinitialize:function(){},initialize:function(){},toJSON:function(t){return i.clone(this.attributes)},sync:function(){return e.sync.apply(this,arguments)},get:function(t){return this.attributes[t]},escape:function(t){return i.escape(this.get(t))},has:function(t){return null!=this.get(t)},matches:function(t){return!!i.iteratee(t,this)(this.attributes)},set:function(t,e,n){if(null==t)return this;var s;if("object"==typeof t?(s=t,n=e):(s={})[t]=e,n||(n={}),!this._validate(s,n))return!1;var r=n.unset,o=n.silent,h=[],a=this._changing;this._changing=!0,a||(this._previousAttributes=i.clone(this.attributes),this.changed={});var c=this.attributes,u=this.changed,l=this._previousAttributes;for(var d in s)e=s[d],i.isEqual(c[d],e)||h.push(d),i.isEqual(l[d],e)?delete u[d]:u[d]=e,r?delete c[d]:c[d]=e;if(this.idAttribute in s&&(this.id=this.get(this.idAttribute)),!o){h.length&&(this._pending=n);for(var f=0;f<h.length;f++)this.trigger("change:"+h[f],this,c[h[f]],n)}if(a)return this;if(!o)for(;this._pending;)n=this._pending,this._pending=!1,this.trigger("change",this,n);return this._pending=!1,this._changing=!1,this},unset:function(t,e){return this.set(t,void 0,i.extend({},e,{unset:!0}))},clear:function(t){var e={};for(var n in this.attributes)e[n]=void 0;return this.set(e,i.extend({},t,{unset:!0}))},hasChanged:function(t){return null==t?!i.isEmpty(this.changed):i.has(this.changed,t)},changedAttributes:function(t){if(!t)return!!this.hasChanged()&&i.clone(this.changed);var e,n=this._changing?this._previousAttributes:this.attributes,s={};for(var r in t){var o=t[r];i.isEqual(n[r],o)||(s[r]=o,e=!0)}return!!e&&s},previous:function(t){return null!=t&&this._previousAttributes?this._previousAttributes[t]:null},previousAttributes:function(){return i.clone(this._previousAttributes)},fetch:function(t){t=i.extend({parse:!0},t);var e=this,n=t.success;return t.success=function(i){var s=t.parse?e.parse(i,t):i;if(!e.set(s,t))return!1;n&&n.call(t.context,e,i,t),e.trigger("sync",e,i,t)},L(this,t),this.sync("read",this,t)},save:function(t,e,n){var s;null==t||"object"==typeof t?(s=t,n=e):(s={})[t]=e;var r=(n=i.extend({validate:!0,parse:!0},n)).wait;if(s&&!r){if(!this.set(s,n))return!1}else if(!this._validate(s,n))return!1;var o=this,h=n.success,a=this.attributes;n.success=function(t){o.attributes=a;var e=n.parse?o.parse(t,n):t;if(r&&(e=i.extend({},s,e)),e&&!o.set(e,n))return!1;h&&h.call(n.context,o,t,n),o.trigger("sync",o,t,n)},L(this,n),s&&r&&(this.attributes=i.extend({},a,s));var c=this.isNew()?"create":n.patch?"patch":"update";"patch"!==c||n.attrs||(n.attrs=s);var u=this.sync(c,this,n);return this.attributes=a,u},destroy:function(t){t=t?i.clone(t):{};var e=this,n=t.success,s=t.wait,r=function(){e.stopListening(),e.trigger("destroy",e,e.collection,t)};t.success=function(i){s&&r(),n&&n.call(t.context,e,i,t),e.isNew()||e.trigger("sync",e,i,t)};var o=!1;return this.isNew()?i.defer(t.success):(L(this,t),o=this.sync("delete",this,t)),s||r(),o},url:function(){var t=i.result(this,"urlRoot")||i.result(this.collection,"url")||q();if(this.isNew())return t;var e=this.get(this.idAttribute);return t.replace(/[^\/]$/,"$&/")+encodeURIComponent(e)},parse:function(t,e){return t},clone:function(){return new this.constructor(this.attributes)},isNew:function(){return!this.has(this.idAttribute)},isValid:function(t){return this._validate({},i.extend({},t,{validate:!0}))},_validate:function(t,e){if(!e.validate||!this.validate)return!0;t=i.extend({},this.attributes,t);var n=this.validationError=this.validate(t,e)||null;return!n||(this.trigger("invalid",this,n,i.extend(e,{validationError:n})),!1)}});var _=e.Collection=function(t,e){e||(e={}),this.preinitialize.apply(this,arguments),e.model&&(this.model=e.model),void 0!==e.comparator&&(this.comparator=e.comparator),this._reset(),this.initialize.apply(this,arguments),t&&this.reset(t,i.extend({silent:!0},e))},y={add:!0,remove:!0,merge:!0},b={add:!0,remove:!1},x=function(t,e,i){i=Math.min(Math.max(i,0),t.length);var n,s=Array(t.length-i),r=e.length;for(n=0;n<s.length;n++)s[n]=t[n+i];for(n=0;n<r;n++)t[n+i]=e[n];for(n=0;n<s.length;n++)t[n+r+i]=s[n]};i.extend(_.prototype,h,{model:m,preinitialize:function(){},initialize:function(){},toJSON:function(t){return this.map((function(e){return e.toJSON(t)}))},sync:function(){return e.sync.apply(this,arguments)},add:function(t,e){return this.set(t,i.extend({merge:!1},e,b))},remove:function(t,e){e=i.extend({},e);var n=!i.isArray(t);t=n?[t]:t.slice();var s=this._removeModels(t,e);return!e.silent&&s.length&&(e.changes={added:[],merged:[],removed:s},this.trigger("update",this,e)),n?s[0]:s},set:function(t,e){if(null!=t){(e=i.extend({},y,e)).parse&&!this._isModel(t)&&(t=this.parse(t,e)||[]);var n=!i.isArray(t);t=n?[t]:t.slice();var s=e.at;null!=s&&(s=+s),s>this.length&&(s=this.length),s<0&&(s+=this.length+1);var r,o,h=[],a=[],c=[],u=[],l={},d=e.add,f=e.merge,p=e.remove,g=!1,v=this.comparator&&null==s&&!1!==e.sort,m=i.isString(this.comparator)?this.comparator:null;for(o=0;o<t.length;o++){r=t[o];var _=this.get(r);if(_){if(f&&r!==_){var b=this._isModel(r)?r.attributes:r;e.parse&&(b=_.parse(b,e)),_.set(b,e),c.push(_),v&&!g&&(g=_.hasChanged(m))}l[_.cid]||(l[_.cid]=!0,h.push(_)),t[o]=_}else d&&(r=t[o]=this._prepareModel(r,e))&&(a.push(r),this._addReference(r,e),l[r.cid]=!0,h.push(r))}if(p){for(o=0;o<this.length;o++)l[(r=this.models[o]).cid]||u.push(r);u.length&&this._removeModels(u,e)}var w=!1,E=!v&&d&&p;if(h.length&&E?(w=this.length!==h.length||i.some(this.models,(function(t,e){return t!==h[e]})),this.models.length=0,x(this.models,h,0),this.length=this.models.length):a.length&&(v&&(g=!0),x(this.models,a,null==s?this.length:s),this.length=this.models.length),g&&this.sort({silent:!0}),!e.silent){for(o=0;o<a.length;o++)null!=s&&(e.index=s+o),(r=a[o]).trigger("add",r,this,e);(g||w)&&this.trigger("sort",this,e),(a.length||u.length||c.length)&&(e.changes={added:a,removed:u,merged:c},this.trigger("update",this,e))}return n?t[0]:t}},reset:function(t,e){e=e?i.clone(e):{};for(var n=0;n<this.models.length;n++)this._removeReference(this.models[n],e);return e.previousModels=this.models,this._reset(),t=this.add(t,i.extend({silent:!0},e)),e.silent||this.trigger("reset",this,e),t},push:function(t,e){return this.add(t,i.extend({at:this.length},e))},pop:function(t){var e=this.at(this.length-1);return this.remove(e,t)},unshift:function(t,e){return this.add(t,i.extend({at:0},e))},shift:function(t){var e=this.at(0);return this.remove(e,t)},slice:function(){return r.apply(this.models,arguments)},get:function(t){if(null!=t)return this._byId[t]||this._byId[this.modelId(this._isModel(t)?t.attributes:t)]||t.cid&&this._byId[t.cid]},has:function(t){return null!=this.get(t)},at:function(t){return t<0&&(t+=this.length),this.models[t]},where:function(t,e){return this[e?"find":"filter"](t)},findWhere:function(t){return this.where(t,!0)},sort:function(t){var e=this.comparator;if(!e)throw new Error("Cannot sort a set without a comparator");t||(t={});var n=e.length;return i.isFunction(e)&&(e=e.bind(this)),1===n||i.isString(e)?this.models=this.sortBy(e):this.models.sort(e),t.silent||this.trigger("sort",this,t),this},pluck:function(t){return this.map(t+"")},fetch:function(t){var e=(t=i.extend({parse:!0},t)).success,n=this;return t.success=function(i){var s=t.reset?"reset":"set";n[s](i,t),e&&e.call(t.context,n,i,t),n.trigger("sync",n,i,t)},L(this,t),this.sync("read",this,t)},create:function(t,e){var n=(e=e?i.clone(e):{}).wait;if(!(t=this._prepareModel(t,e)))return!1;n||this.add(t,e);var s=this,r=e.success;return e.success=function(t,e,i){n&&s.add(t,i),r&&r.call(i.context,t,e,i)},t.save(null,e),t},parse:function(t,e){return t},clone:function(){return new this.constructor(this.models,{model:this.model,comparator:this.comparator})},modelId:function(t){return t[this.model.prototype.idAttribute||"id"]},values:function(){return new E(this,k)},keys:function(){return new E(this,I)},entries:function(){return new E(this,S)},_reset:function(){this.length=0,this.models=[],this._byId={}},_prepareModel:function(t,e){if(this._isModel(t))return t.collection||(t.collection=this),t;(e=e?i.clone(e):{}).collection=this;var n=new this.model(t,e);return n.validationError?(this.trigger("invalid",this,n.validationError,e),!1):n},_removeModels:function(t,e){for(var i=[],n=0;n<t.length;n++){var s=this.get(t[n]);if(s){var r=this.indexOf(s);this.models.splice(r,1),this.length--,delete this._byId[s.cid];var o=this.modelId(s.attributes);null!=o&&delete this._byId[o],e.silent||(e.index=r,s.trigger("remove",s,this,e)),i.push(s),this._removeReference(s,e)}}return i},_isModel:function(t){return t instanceof m},_addReference:function(t,e){this._byId[t.cid]=t;var i=this.modelId(t.attributes);null!=i&&(this._byId[i]=t),t.on("all",this._onModelEvent,this)},_removeReference:function(t,e){delete this._byId[t.cid];var i=this.modelId(t.attributes);null!=i&&delete this._byId[i],this===t.collection&&delete t.collection,t.off("all",this._onModelEvent,this)},_onModelEvent:function(t,e,i,n){if(e){if(("add"===t||"remove"===t)&&i!==this)return;if("destroy"===t&&this.remove(e,n),"change"===t){var s=this.modelId(e.previousAttributes()),r=this.modelId(e.attributes);s!==r&&(null!=s&&delete this._byId[s],null!=r&&(this._byId[r]=e))}}this.trigger.apply(this,arguments)}});var w="function"==typeof Symbol&&Symbol.iterator;w&&(_.prototype[w]=_.prototype.values);var E=function(t,e){this._collection=t,this._kind=e,this._index=0},k=1,I=2,S=3;w&&(E.prototype[w]=function(){return this}),E.prototype.next=function(){if(this._collection){if(this._index<this._collection.length){var t,e=this._collection.at(this._index);if(this._index++,this._kind===k)t=e;else{var i=this._collection.modelId(e.attributes);t=this._kind===I?i:[i,e]}return{value:t,done:!1}}this._collection=void 0}return{value:void 0,done:!0}};var T=e.View=function(t){this.cid=i.uniqueId("view"),this.preinitialize.apply(this,arguments),i.extend(this,i.pick(t,H)),this._ensureElement(),this.initialize.apply(this,arguments)},P=/^(\S+)\s*(.*)$/,H=["model","collection","el","id","attributes","className","tagName","events"];i.extend(T.prototype,h,{tagName:"div",$:function(t){return this.$el.find(t)},preinitialize:function(){},initialize:function(){},render:function(){return this},remove:function(){return this._removeElement(),this.stopListening(),this},_removeElement:function(){this.$el.remove()},setElement:function(t){return this.undelegateEvents(),this._setElement(t),this.delegateEvents(),this},_setElement:function(t){this.$el=t instanceof e.$?t:e.$(t),this.el=this.$el[0]},delegateEvents:function(t){if(t||(t=i.result(this,"events")),!t)return this;for(var e in this.undelegateEvents(),t){var n=t[e];if(i.isFunction(n)||(n=this[n]),n){var s=e.match(P);this.delegate(s[1],s[2],n.bind(this))}}return this},delegate:function(t,e,i){return this.$el.on(t+".delegateEvents"+this.cid,e,i),this},undelegateEvents:function(){return this.$el&&this.$el.off(".delegateEvents"+this.cid),this},undelegate:function(t,e,i){return this.$el.off(t+".delegateEvents"+this.cid,e,i),this},_createElement:function(t){return document.createElement(t)},_ensureElement:function(){if(this.el)this.setElement(i.result(this,"el"));else{var t=i.extend({},i.result(this,"attributes"));this.id&&(t.id=i.result(this,"id")),this.className&&(t.class=i.result(this,"className")),this.setElement(this._createElement(i.result(this,"tagName"))),this._setAttributes(t)}},_setAttributes:function(t){this.$el.attr(t)}});var $=function(t,e,n,s){i.each(n,(function(i,n){e[n]&&(t.prototype[n]=function(t,e,i,n){switch(e){case 1:return function(){return t[i](this[n])};case 2:return function(e){return t[i](this[n],e)};case 3:return function(e,s){return t[i](this[n],A(e,this),s)};case 4:return function(e,s,r){return t[i](this[n],A(e,this),s,r)};default:return function(){var e=r.call(arguments);return e.unshift(this[n]),t[i].apply(t,e)}}}(e,i,n,s))}))},A=function(t,e){return i.isFunction(t)?t:i.isObject(t)&&!e._isModel(t)?C(t):i.isString(t)?function(e){return e.get(t)}:t},C=function(t){var e=i.matches(t);return function(t){return e(t.attributes)}};i.each([[_,{forEach:3,each:3,map:3,collect:3,reduce:0,foldl:0,inject:0,reduceRight:0,foldr:0,find:3,detect:3,filter:3,select:3,reject:3,every:3,all:3,some:3,any:3,include:3,includes:3,contains:3,invoke:0,max:3,min:3,toArray:1,size:1,first:3,head:3,take:3,initial:3,rest:3,tail:3,drop:3,last:3,without:0,difference:0,indexOf:3,shuffle:1,lastIndexOf:3,isEmpty:1,chain:1,sample:3,partition:3,groupBy:3,countBy:3,sortBy:3,indexBy:3,findIndex:3,findLastIndex:3},"models"],[m,{keys:1,values:1,pairs:1,invert:1,pick:0,omit:0,chain:1,isEmpty:1},"attributes"]],(function(t){var e=t[0],n=t[1],s=t[2];e.mixin=function(t){var n=i.reduce(i.functions(t),(function(t,e){return t[e]=0,t}),{});$(e,t,n,s)},$(e,i,n,s)})),e.sync=function(t,n,s){var r=R[t];i.defaults(s||(s={}),{emulateHTTP:e.emulateHTTP,emulateJSON:e.emulateJSON});var o={type:r,dataType:"json"};if(s.url||(o.url=i.result(n,"url")||q()),null!=s.data||!n||"create"!==t&&"update"!==t&&"patch"!==t||(o.contentType="application/json",o.data=JSON.stringify(s.attrs||n.toJSON(s))),s.emulateJSON&&(o.contentType="application/x-www-form-urlencoded",o.data=o.data?{model:o.data}:{}),s.emulateHTTP&&("PUT"===r||"DELETE"===r||"PATCH"===r)){o.type="POST",s.emulateJSON&&(o.data._method=r);var h=s.beforeSend;s.beforeSend=function(t){if(t.setRequestHeader("X-HTTP-Method-Override",r),h)return h.apply(this,arguments)}}"GET"===o.type||s.emulateJSON||(o.processData=!1);var a=s.error;s.error=function(t,e,i){s.textStatus=e,s.errorThrown=i,a&&a.call(s.context,t,e,i)};var c=s.xhr=e.ajax(i.extend(o,s));return n.trigger("request",n,c,s),c};var R={create:"POST",update:"PUT",patch:"PATCH",delete:"DELETE",read:"GET"};e.ajax=function(){return e.$.ajax.apply(e.$,arguments)};var M=e.Router=function(t){t||(t={}),this.preinitialize.apply(this,arguments),t.routes&&(this.routes=t.routes),this._bindRoutes(),this.initialize.apply(this,arguments)},N=/\((.*?)\)/g,O=/(\(\?)?:\w+/g,U=/*\w+/g,j=/[\-{}\[\]+?.,\\\^$|#\s]/g;i.extend(M.prototype,h,{preinitialize:function(){},initialize:function(){},route:function(t,n,s){i.isRegExp(t)||(t=this._routeToRegExp(t)),i.isFunction(n)&&(s=n,n=""),s||(s=this[n]);var r=this;return e.history.route(t,(function(i){var o=r._extractParameters(t,i);!1!==r.execute(s,o,n)&&(r.trigger.apply(r,["route:"+n].concat(o)),r.trigger("route",n,o),e.history.trigger("route",r,n,o))})),this},execute:function(t,e,i){t&&t.apply(this,e)},navigate:function(t,i){return e.history.navigate(t,i),this},_bindRoutes:function(){if(this.routes){this.routes=i.result(this,"routes");for(var t,e=i.keys(this.routes);null!=(t=e.pop());)this.route(t,this.routes[t])}},_routeToRegExp:function(t){return t=t.replace(j,"\\$&").replace(N,"(?:$1)?").replace(O,(function(t,e){return e?t:"([^/?]+)"})).replace(U,"([^?]*?)"),new RegExp("^"+t+"(?:\\?([\\s\\S]*))?$")},_extractParameters:function(t,e){var n=t.exec(e).slice(1);return i.map(n,(function(t,e){return e===n.length-1?t||null:t?decodeURIComponent(t):null}))}});var z=e.History=function(){this.handlers=[],this.checkUrl=this.checkUrl.bind(this),"undefined"!=typeof window&&(this.location=window.location,this.history=window.history)},F=/^[#\/]|\s+$/g,J=/^\/+|\/+$/g,B=/#.*$/;z.started=!1,i.extend(z.prototype,h,{interval:50,atRoot:function(){return this.location.pathname.replace(/[^\/]$/,"$&/")===this.root&&!this.getSearch()},matchRoot:function(){return this.decodeFragment(this.location.pathname).slice(0,this.root.length-1)+"/"===this.root},decodeFragment:function(t){return decodeURI(t.replace(/%25/g,"%2525"))},getSearch:function(){var t=this.location.href.replace(/#.*/,"").match(/\?.+/);return t?t[0]:""},getHash:function(t){var e=(t||this).location.href.match(/#(.*)$/);return e?e[1]:""},getPath:function(){var t=this.decodeFragment(this.location.pathname+this.getSearch()).slice(this.root.length-1);return"/"===t.charAt(0)?t.slice(1):t},getFragment:function(t){return null==t&&(t=this._usePushState||!this._wantsHashChange?this.getPath():this.getHash()),t.replace(F,"")},start:function(t){if(z.started)throw new Error("Backbone.history has already been started");if(z.started=!0,this.options=i.extend({root:"/"},this.options,t),this.root=this.options.root,this._wantsHashChange=!1!==this.options.hashChange,this._hasHashChange="onhashchange"in window&&(void 0===document.documentMode||document.documentMode>7),this._useHashChange=this._wantsHashChange&&this._hasHashChange,this._wantsPushState=!!this.options.pushState,this._hasPushState=!(!this.history||!this.history.pushState),this._usePushState=this._wantsPushState&&this._hasPushState,this.fragment=this.getFragment(),this.root=("/"+this.root+"/").replace(J,"/"),this._wantsHashChange&&this._wantsPushState){if(!this._hasPushState&&!this.atRoot()){var e=this.root.slice(0,-1)||"/";return this.location.replace(e+"#"+this.getPath()),!0}this._hasPushState&&this.atRoot()&&this.navigate(this.getHash(),{replace:!0})}if(!this._hasHashChange&&this._wantsHashChange&&!this._usePushState){this.iframe=document.createElement("iframe"),this.iframe.src="javascript:0",this.iframe.style.display="none",this.iframe.tabIndex=-1;var n=document.body,s=n.insertBefore(this.iframe,n.firstChild).contentWindow;s.document.open(),s.document.close(),s.location.hash="#"+this.fragment}var r=window.addEventListener||function(t,e){return attachEvent("on"+t,e)};if(this._usePushState?r("popstate",this.checkUrl,!1):this._useHashChange&&!this.iframe?r("hashchange",this.checkUrl,!1):this._wantsHashChange&&(this._checkUrlInterval=setInterval(this.checkUrl,this.interval)),!this.options.silent)return this.loadUrl()},stop:function(){var t=window.removeEventListener||function(t,e){return detachEvent("on"+t,e)};this._usePushState?t("popstate",this.checkUrl,!1):this._useHashChange&&!this.iframe&&t("hashchange",this.checkUrl,!1),this.iframe&&(document.body.removeChild(this.iframe),this.iframe=null),this._checkUrlInterval&&clearInterval(this._checkUrlInterval),z.started=!1},route:function(t,e){this.handlers.unshift({route:t,callback:e})},checkUrl:function(t){var e=this.getFragment();if(e===this.fragment&&this.iframe&&(e=this.getHash(this.iframe.contentWindow)),e===this.fragment)return!1;this.iframe&&this.navigate(e),this.loadUrl()},loadUrl:function(t){return!!this.matchRoot()&&(t=this.fragment=this.getFragment(t),i.some(this.handlers,(function(e){if(e.route.test(t))return e.callback(t),!0})))},navigate:function(t,e){if(!z.started)return!1;e&&!0!==e||(e={trigger:!!e}),t=this.getFragment(t||"");var i=this.root;""!==t&&"?"!==t.charAt(0)||(i=i.slice(0,-1)||"/");var n=i+t;t=t.replace(B,"");var s=this.decodeFragment(t);if(this.fragment!==s){if(this.fragment=s,this._usePushState)this.history[e.replace?"replaceState":"pushState"]({},document.title,n);else{if(!this._wantsHashChange)return this.location.assign(n);if(this._updateHash(this.location,t,e.replace),this.iframe&&t!==this.getHash(this.iframe.contentWindow)){var r=this.iframe.contentWindow;e.replace||(r.document.open(),r.document.close()),this._updateHash(r.location,t,e.replace)}}return e.trigger?this.loadUrl(t):void 0}},_updateHash:function(t,e,i){if(i){var n=t.href.replace(/(javascript:|#).*$/,"");t.replace(n+"#"+e)}else t.hash="#"+e}}),e.history=new z,m.extend=_.extend=M.extend=T.extend=z.extend=function(t,e){var n,s=this;return n=t&&i.has(t,"constructor")?t.constructor:function(){return s.apply(this,arguments)},i.extend(n,s,e),n.prototype=i.create(s.prototype,t),n.prototype.constructor=n,n.__super__=s.prototype,n};var q=function(){throw new Error('A "url" property or function must be specified')},L=function(t,e){var i=e.error;e.error=function(n){i&&i.call(e.context,t,n,e),t.trigger("error",t,n,e)}};return e}(o,i,t,e)}.apply(e,s))||(t.exports=r)}).call(this,i(24))}}]);

dc28e1b1e9d2d5cfac3f50e6b263274487e4b6f9.js
define(['backbone'], function (Backbone) {

 return Backbone.View.extend({
 initialize: function () {
 this._menu = $('');
 this._womiMenu = $('<div />', {
 'class': 'womi-menu'
 });
 this._womiMenu.append(this._menu);
 },

 getMenu: function () {
 return this._womiMenu;
 },

 addMenuItem: function (item) {
 var validList = [/*'alttext', */'license', 'reset', 'fullscreen', 'play', 'stop', 'pause', 'prev', 'next', 'zoomin', 'zoomout', 'disabledAlt'];
 if (_.find(validList, function (n) {
 return n == item.name
 }) === undefined) {
 return;
 }

 var itemTitles = {
 'fullscreen': 'Widok pełnoekranowy',
 //'play': 'Graj',
 'reset': 'Resetuj widok',
 'play': 'Odtwórz/Wstrzymaj',
 'classic': 'Wersja klasyczna',
 'mobile': 'Wersja mobilna',
 'classic3d': 'Wersja klasyczna (3D)',
 'classic2d': 'Wersja klasyczna (2D)',
 'stop': 'Zatrzymaj',
 'pause': 'Odtwórz/Wstrzymaj',
 'next': 'Następny',
 'prev': 'Poprzedni',
 'zoomin': 'Przybliż',
 'zoomout': 'Oddal',
 'license': 'Licencja',
 'alttext': 'Pokaż tekst alternatywny',
 'disabledAlt': 'Alternatywny opis'
 };
 //var li = $('', {style: 'display: none;'});
 var li = $('');
 var itemA = $('<button />', {
 'class': item.name.replace(' ', '') + ' hastip',
 'title': itemTitles[item.name]
 });
 itemA.append('' + itemTitles[item.name] + '');
 if (item.name == 'license' && (localStorage.epoLicenseOn == 'false' || !localStorage.epoLicenseOn)) {
 itemA.hide();
 }

 if (item.name == 'alttext' && (localStorage.epoAltText == 'false' || !localStorage.epoAltText)) {
 itemA.hide();
 }

 if (item.name == 'disabledAlt' && (localStorage.epoAltDescOn == 'false' || !localStorage.epoAltDescOn)) {
 itemA.hide();
 }

 itemA.click(function () {
 return item.callback(this);
 });
 li.append(itemA);

 this._menu.append(li);
 },

 setItemCallback: function (name, callback) {
 this._menu.find('li .' + name).click(function () {
 return callback();
 });
 },

 showMenuItem: function (name) {
 this._menu.find('li .' + name).show();
 },

 hideMenuItem: function (name) {
 this._menu.find('li .' + name).hide();
 }

 }
);
});

4c47ccb4412be0341a05fb4d6115aa536d589bfb.js
define(['require',
 'jquery',
 'bowser',
 'backbone',
 './EngineInterface',
 'modules/api/apilistener'], function (require, $, bowser, Backbone, EngineInterface, apilistener) {

 return EngineInterface.extend({
 maxPercentageHeight: 1,
 _calcDimensions: function () {
 if ($(this.destination).closest('.interactive-banner').length) {
 return {
 width: '100%',
 height: $(window).width() * this._opts.heightRatio
 };
 }

 var dimensions = {
 width: $(this.destination).width(),
 height: $(this.destination).width() * this._opts.heightRatio
 };

 var maxHeight = this.maxPercentageHeight * $(window).height();
 if (this.fsMode) {
 maxHeight = $(window).height();
 }

 var scale = maxHeight / dimensions.height;
 if (dimensions.height > maxHeight) {

 dimensions.width *= scale;
 dimensions.height *= scale;
 }
 dimensions.scale = scale;
 return dimensions;
 },

 load: function () {

 var srcUrl = this.source;
 var dimensions = this._calcDimensions();

 if (!this.fsMode) {
 if (this._initPlayScreen(dimensions)) {
 this.on('resize', this.debouncedResizeHandler());
 return;
 } else {
 this.off('resize', this.debouncedResizeHandler());
 }
 }
 var _this = this;
 this.createIframe(this.destination, dimensions, function (iframe) {
 }, function (iframe) {
 iframe[0].src = srcUrl;
 _this._connectApiListener(iframe);
 _this.debounceBody = function (width, height) {
 iframe.css(_this._calcDimensions());
 };
 });

 this.on('resize', this.debouncedResizeHandler());

 },

 _connectApiListener: function (iframe) {
 var _this = this;
 require(['require', 'reader.api', 'reader.communication.api'], function (require, Api, commapi) {
 var api = new Api(require, true, _this.source);
 _this.apiListenerClose = apilistener(_this, window, iframe[0].contentWindow, api, commapi);
 });
 },

 _modifyPlayDiv: function (div) {
 var dim = this._calcDimensions();
 div.css('min-height', dim.height);
 },
 dispose: function () {
 this._prependUnderlay(true);
 $(this.destination).children().remove();
 this._playScreenClicked = false;
 this.apiListenerClose && this.apiListenerClose();
 this.off('resize', this.debouncedResizeHandler());
 },

 getSize: function () {
 var hRatio = this._opts.heightRatio;
 return {
 width: this.destination.width(),
 height: this.destination.width() * hRatio
 }
 }
 });
});

b28313c42f64345470e4d818bef06a41e12edb0d.js
define(['require',
 'jquery',
 'bowser',
 'backbone',
 'underscore',
 './ScalingDivMixin',
 './PureHTMLEngine',
 './EngineInterface',
 './AdobeEdgeEngine'], function (require, $, bowser, Backbone, _, ScalingDivMixin, PureHTMLEngine, EngineInterface, AdobeEdgeEngine) {

 var Engine = Backbone.View.extend({});

 _.extend(Engine.prototype, EngineInterface.prototype, ScalingDivMixin.prototype, AdobeEdgeEngine.prototype, {
 initialize: function (options) {
 PureHTMLEngine.prototype.initialize.call(this, options);
 },
 contentsAdjust: function (iframe) {
 iframe.attr('allowfullscreen', true);
 },
 postIframeLoad: function (iframe) {
 var container = iframe.contents().find('#container');
 this._overrideOffsets(iframe);
 this.iframeResizeCallback(container.width(), container.height(), iframe);
 this.debounceBody(container.width(), container.height());
 var _this = this;
 var oldDebounce = this.debounceBody;
 this.debounceBody = function (width, height) {
 if (_this.isBrowserFullscreen()) {
 iframe.css('transform', '');
 return;
 }
 oldDebounce.call(_this, width, height);
 }
 },

 _calcDimensions: function () {
 var hRatio = this._opts.heightRatio;
 var dimensions = {
 width: $(this.destination).width(),
 height: $(this.destination).width() * hRatio
 };

 var maxHeight = this.maxPercentageHeight * $(window).height();
 if (this.fsMode) {
 maxHeight = $(window).height();
 }

 if (dimensions.height > maxHeight) {
 var scale = maxHeight / dimensions.height;
 dimensions.width *= scale;
 dimensions.height *= scale;
 }
 dimensions.desiredWidth = dimensions.width;
 dimensions.desiredHeight = dimensions.height;
 dimensions.width = this.savedWidth || dimensions.desiredWidth;
 dimensions.height = this.savedHeight || dimensions.desiredHeight;
 dimensions.scale = Math.min(dimensions.desiredWidth / dimensions.width, dimensions.desiredHeight / dimensions.height);
 return dimensions;
 },

 enterFS: function () {
 this._prependUnderlay(true);
 $(this.destination).children().remove();
 this._playScreenClicked = false;
 this.apiListenerClose && this.apiListenerClose();
 this.off('resize', this.debouncedResizeHandler());
 },

 closeFS: function () {
 this.load();
 },

 _overrideOffsets: function (iframe) {
 if (document.msExitFullscreen) {
 try {
 var wnd = iframe[0].contentWindow;
 var ElementClass = wnd.HTMLElement;
 var offsets = ['offsetWidth', 'offsetHeight', 'offsetLeft', 'offsetTop'];
 var offsetsMap = {};

 function makeDefines(propertyName) {
 offsetsMap[propertyName] = Object.getOwnPropertyDescriptor(ElementClass.prototype, propertyName);
 Object.defineProperty(ElementClass.prototype, propertyName, {
 get: function () {
 var w = offsetsMap[propertyName].get.call(this);
 if (document.msFullscreenElement && document.msExitFullscreen) {
 return (w * 100);
 } else {
 return w;
 }
 }
 });

 }

 _.each(offsets, function(name) {
 makeDefines(name);
 });
 } catch (ex) {
 console.warn('problem with overriding offsets for pano2vr');
 }
 }
 }
 });

 return Engine;
});

d9cedf0f96be067d06663766ed41abf6c3e1f485.js
define(['./GeneratedExerciseEngine'], function(GeneratedExerciseEngine){
 return GeneratedExerciseEngine.extend({
 additionalOpts: function(require, obj, ReaderApi){
 var readerApiObj = new ReaderApi(require, null, this.source);
 return {
 source: this.source,
 readerApiObject: readerApiObj
 }
 },
 getSource: function(){
 return '/global/libraries/cp/v1_0/womi.js';
 }
 })
});

27f3824616120dfbfbbc97d6fff99d8fba54d5fe.js
define(['require', 'jquery', 'bowser', 'backbone', 'modules/core/Registry'], function (require, $, bowser, Backbone, Registry) {
 var readerDefinition = $('#reader-definition');
 var deviceDetection = require('device_detection');

 readerDefinition = {
 stylesheet: readerDefinition.data('stylesheet'),
 env: readerDefinition.data('environment-type')
 };
 return Backbone.View.extend({
 LIMIT_WIDTH: 948,
 debounceTimeout: 500,
 maxPercentageHeight: 0.80,
 roles: {},

 initialize: function (options) {
 this.init(options.source, options.destination);
 this._opts = options.params;
 this._parentOptions = options.parentOptions
 },

 init: function (source, destination) {
 this.source = source;
 this.destination = destination;
 this.fsMode = false;

 var image = this.destination.find('.image-container');

 if (image.length === 1) {
 this.splashScreen = image.clone();
 } else {
 this.splashScreen = this.createSplashscreen();

 }
 this.on('autoplay', function () {
 this._playScreenClicked = true;
 });
 },

 createSplashscreen() {
 return $('<div class="image-container" data-alt="" data-display-mode="2d" data-src="/global/libraries/epo/img/splashscreen/classic.svg" data-width="100%"></div>')
 },

 load: function () {
 },

 dispose: function () {
 },

 isBrowserFullscreen: function () {
 return document.fullscreenElement || document.webkitFullscreenElement || document.mozFullScreenElement ||
 document.msFullscreenElement;
 },

 createIframe: function (container, dimensions, onloadCallback, preLoadCallback) {
 var iframe = $('<iframe frameborder="0">').css({
 margin: '0 auto',
 padding: 0,
 border: 'none',
 width: dimensions.width,
 height: dimensions.height
 });

 if (preLoadCallback) {
 preLoadCallback(iframe);
 }
 iframe.addClass('proper-element');

 iframe.load(function () {
 iframe.contents().find('body').css({
 margin: 0,
 padding: 0
 });

 onloadCallback(iframe);
 });

 $(container).append(iframe);
 },

 debounceBody: function (width, height) {
 this.dispose();
 this.load();
 },

 _reprocess: function () {
 if (!this._playScreenClicked) {
 this.dispose();
 this.load();
 }
 this.trigger('resize');
 },

 recalculate: function () {
 this.debounceBody();
 },

 _womiContainer: function () {
 return this.destination.closest('.womi-container')[0];
 },

 _processEvent: function (event, type) {
 if (typeof type !== 'undefined' && event.target == this._womiContainer()) {
 (this['_' + type])();
 }
 },

 hasOwnLoadedRule: function () {
 return false;
 },

 getButtons: function () {
 return null;
 },

 enterFS: function () {
 },

 closeFS: function () {
 },

 debouncedResizeHandler: function () {
 var _this = this;

 if (this._debounceHandler) {
 return this._debounceHandler;
 } else {
 this._debounceHandler = $.debounce(_this.debounceTimeout, (function () {
 var lastWidth = $(window).width();
 var lastHeight = $(window).height();

 return function (event, type) {
 // This is a fix for behaviour seen on iPhone where address bar show/hide events cause resize events
 if (lastHeight == $(window).height() && lastWidth == $(window).width()) {
 _this._processEvent(event, type);
 return;
 }
 var ua = navigator.userAgent;

 if (ua.indexOf('Android') != -1 || ua.indexOf('iPhone') != -1 || ua.indexOf('iPad') != -1 || ua.indexOf('Windows Phone') != -1) {
 var rotated = (lastHeight != $(window).height()) && (lastWidth != $(window).width());
 if (!rotated) {
 return;
 }

 }

 lastHeight = $(window).height();
 lastWidth = $(window).width();

 _this.debounceBody(lastWidth, lastHeight);
 };
 }()));

 return this._debounceHandler;
 }
 },

 setFullScreenMode: function () {
 this.fsMode = true;
 },
 hasFullscreen: function () {
 return true;
 },
 setRoles: function (roles) {
 this.roles = roles;
 },
 _prependUnderlay: function (create) {
 var dest = $(this.destination), _this = this;
 var underlay = dest.parent().find('.womi-underlay');
 if (create && underlay.length == 0) {
 underlay = $('<div>', {class: 'womi-underlay'});
 dest.before(underlay);
 }
 var wc = $(_this._womiContainer());
 if (underlay.length > 0) {
 underlay.css('top', wc.top);
 underlay.css('left', wc.left);
 underlay.css('width', wc.width() + 'px');
 underlay.css('height', wc.height() + 'px');
 }
 },

 _removeOverlay: function () {
 $(this.destination).parent().find('.womi-underlay').remove();
 },

 _fsEvent: function () {
 var ev;
 if (!bowser.msie) {
 ev = new CustomEvent('fullscreen', {
 bubbles: true,
 cancelable: true
 });
 } else {
 ev = document.createEvent("Event");
 ev.initEvent('fullscreen', true, true);
 }
 return ev;
 },

 _initPlayScreen: function (dimension) {
 var _this = this;
 if (this._playScreenClicked) {
 this.destination.empty();
 return false;
 } else {
 this._recreateSplashScreen();
 this.playItem = this._playItem(dimension);
 this.playItem.click(function () {
 if (!epGlobal.isMobile) {
 _this._playScreenClicked = true;
 _this.load();
 } else {

 _this.destination[0].dispatchEvent(_this._fsEvent());
 }
 return false;
 });
 if (this.destination.find('.play-div').length == 0) {
 this.destination.append(this.playItem);
 }
 return true;
 }
 },

 triggerFS: function () {
 this.destination[0].dispatchEvent(this._fsEvent());
 },

 _playItem: function (dimension) {
 var image, width, height;
 var _this = this;
 if (this.splashScreen) {
 var womi = Registry.get('womi');
 image = new womi.SplashscreenImageContainer({
 el: this.destination.find('.image-container'),
 options: {}
 });
 image._isSplash = true;
 if (this.fsMode) {
 //image._width = 100.0;
 //image.maxHeight = 1.0;
 }
 this._playscreenImage = image;
 image.load();
 image.initSplash();
 var container = $(image._imgElement);
 width = container.width();
 height = container.height();
 } else {
 width = dimension.width;
 height = dimension.height;
 }

 var div = $('<div/>', {
 class: 'play-div',
 css: {
 position: 'relative'
 }
 });
 this._modifyPlayDiv(div);
 var overlay = $('<div/>', {
 class: 'womi-overlay'
 });

 var buttonClass = (!deviceDetection.isMobile ? 'play-button-classic' : 'play-button-mini');

 var button = $('<button/>', {
 class: 'play-button ' + buttonClass,
 title: 'Uruchom'
 });

 div.append(button);

 if (image) {
 $(image._imgElement).addClass('proper-element');
 div.append(image._imgElement);
 var properImg = div.find('img');
 if (properImg.length > 0) {
 properImg.css('width', 'auto').css('height', 'auto').css('max-height', this.getSize().height);
 }
 div.on('remove', function () {
 if (_this._playscreenImage) {
 _this._playscreenImage.dispose();
 }
 });
 }

 return div;
 },

 _modifyPlayDiv: function (div) {

 },

 _playLabel: function () {
 return '';
 },

 _loadEngineScript: function (name, url, callback) {
 if ($('script[data-engine-name="' + name + '"]').length == 0) {
 epGlobal.head.js(url, function () {
 callback();
 });
 } else {
 callback();
 }
 },

 _loadScripts: function (args) {
 epGlobal.head.js.apply(this, arguments);
 },

 _recreateSplashScreen: function () {
 if (this.splashScreen) {
 if (this.destination.find('.image-container').length != 1) {
 this.destination.append(this.splashScreen.clone());
 }
 }
 },
 getSize: function () {
 return {
 width: ($(window).width() < this.LIMIT_WIDTH ? $(window).width() : this.LIMIT_WIDTH),
 height: $(window).height()
 }
 }
 });

});

4118f033f9f24cd73d92c5847cc40c8b5869ca57.js
define(['backbone', 'underscore'], function (Backbone, _) {
 var counter = 0;
 var useLog = ('{{ EPO_READER_USE_LOGGING }}' == 'True');
 var logger = _.extend({
 initialize: function () {

 },
 addLogger: function (object, proxy) {
 this.listenTo(proxy || object, 'all', function (eventName) {
 useLog && console.log((counter++) + ' object ' + (object.name || object) + ' fires event ' + eventName);
 });
 },
 log: function (msg, object, msgIsObject) {
 var args = [];
 if (object) {
 args = [(counter++) + ' object ' + (object.name || object) + ': ' + (!msgIsObject ? msg : '')];
 } else {
 args = [(counter++) + ' ' + (!msgIsObject ? msg : '')];
 }
 msgIsObject && args.push(msg);
 useLog && console.log.apply(console, args);
 }
 }, Backbone.Events);
 return logger;
});

f523f9c804cc1bc57a3acd1899bfd4b25a152c99.js
define(['require', 'jquery', 'bowser', 'backbone', './EngineInterface'], function (require, $, bowser, Backbone, EngineInterface) {

 return EngineInterface.extend({
 load: function () {
 var _this = this;

 require([this.source], function (lib) {
 _this.obj = new lib();
 _this.obj.start(_this.destination);
 });
 },
 hasFullscreen: function () {
 return false;
 },
 _reprocess: function () {

 }
 });
});

116211c40ddf4ecac05fd8eec733b86102b8842e.js
define(['require', 'jquery', 'bowser', 'backbone', './EngineInterface'], function (require, $, bowser, Backbone, EngineInterface) {
 return EngineInterface.extend({
 load: function () {
 var _this = this;
 require(['modules/womi_exercise'], function (engine) {
 var obj = new engine({source: _this.source, destination: _this.destination});
 _this.obj = obj;
 obj.start();
 });
 },
 hasFullscreen: function () {
 return false;
 },
 _reprocess: function () {
 this.obj && this.obj.resize();
 },
 getSize: function () {
 return {
 width: ($(window).width() < this.LIMIT_WIDTH ? $(window).width() : this.LIMIT_WIDTH),
 height: $(window).height()
 }
 }
 });
});

66cb4b57933d564154d00d059d025b9fc6bf0142.js
define(['require', 'jquery', 'bowser', 'backbone', 'underscore', 'modules/core/engines/EngineInterface', 'modules/api/Utils'],
 function (require, $, bowser, Backbone, _, EngineInterface, apiUtils) {
 var DaisyEngine = Backbone.View.extend({});
 _.extend(DaisyEngine.prototype, EngineInterface.prototype, {

 iframe: null,

 load: function () {

 var that = this;

 if (this.iframe) {
 return;
 }

 var dimensions = {
 width: $(this.destination).width(),
 height: 600
 };

 var mainFile = this._opts.manifest.mainFile || this._opts.manifest['main-file'] || null;

 var url = this.source.replace(/(^\w+:|^)\/\//, '');
 if (!mainFile) {
 url = url + '/' + (this._opts.manifest.folder ? this._opts.manifest.folder + '/' : '') + 'ncc.html';
 }

 this.iframe = $('<iframe src="/daisy/daisywp.html?ncc=' + url + '" frameborder="0">').css({
 margin: 0,
 padding: 0,
 border: 'none',
 width: dimensions.width,
 height: dimensions.height
 });

 this.iframe.addClass('proper-element').attr('aria-hidden', true);

 this.iframe.load(function () {
 that.iframe.contents().find('body').css({
 margin: 0,
 padding: 0
 });
 });

 $(this.destination).html('' + this._opts.altText + '').append(this.iframe);
 },
 });
 return DaisyEngine;
 }
);

c378c07b31d4d1229987bbfdb8febd8952e1cb47.js
define(['require', 'jquery', 'bowser', 'backbone', 'underscore', 'modules/core/engines/ScalingDivMixin', 'modules/core/engines/EngineInterface', 'modules/api/Utils'], function (require, $, bowser, Backbone, _, ScalingDivMixin, EngineInterface, apiUtils) {
 var GeogebraEngine = Backbone.View.extend({});
 _.extend(GeogebraEngine.prototype, EngineInterface.prototype, ScalingDivMixin, {
 scriptSrc: "//static.epodreczniki.pl/portal/3rdparty/geogebra/{ver}/web/web.nocache.js",
 scriptSrc3d: "//static.epodreczniki.pl/portal/3rdparty/geogebra/{ver}/web3d/web3d.nocache.js",

 VERSION_MAP: {
 '4.2.51.0': '4.3.81.0',//'4.2.53.0',
 '4.2': '4.2.60.0',
 '4.3': '4.3.81.0',
 '4.4': '4.4.37.0',
 '5.0': '5.0.142.0',
 'default': '4.4.37.0'
 },

 verRegex: /(\d+.\d+).\d+.\d+/,
 iframe: null,
 applet: null,
 appletOptions: null,

 versionResolver: function (ver) {
 if (ver) {
 if (this.VERSION_MAP[ver]) {
 return this.VERSION_MAP[ver];
 }
 var splitVersion = ver.match(this.verRegex)[1];
 var resolver = this.VERSION_MAP[splitVersion];
 if (resolver) {
 return resolver;
 } else {
 return this.VERSION_MAP['default']
 }
 } else {
 return this.VERSION_MAP['default']
 }
 },

 load: function () {
 var _this = this;

 var dimensions = this.resizeArticleToContainer(this.destination);

 this._prependUnderlay(false);

 if (!this.fsMode) {
 if (this._initPlayScreen(dimensions)) {
 this.on('resize', this.debouncedResizeHandler());
 return;
 } else {
 this.off('resize', this.debouncedResizeHandler());
 }
 }

 var article = this.source,
 iframeSrc = '/generator/geogebra.html';

 if (window.CP_CONFIGURATION && window.CP_CONFIGURATION.version) {
 iframeSrc = iframeSrc + '?v=' + encodeURIComponent(window.CP_CONFIGURATION.version);
 }

 iframeSrc = iframeSrc + '#applet-url=' + encodeURIComponent(this.source);

 if (null === _this.iframe) {
 console.info('Geogebra frame create')
 _this.iframe = $('<iframe>', {
 class: 'geogebra-applet',
 src: iframeSrc
 });

 _this.iframe.on('load', function () {
 _this.applet = null;
 _this.fetchApplet();

 console.info('Geogebra frame load')
 var iframeWindow = _this.getFrameWindow();
 iframeWindow.ggAppletReadyCallback = function () {
 _this.recalculate();
 };

 _this.debounceBody = function (width, height) {
 var d = _this.resizeArticleToContainer(_this.destination);
 if (!d) return;
 _this.iframe.parent().css({
 width: d.desiredWidth,
 height: d.desiredHeight
 });
 _this.iframe.css('transform', 'scale(' + (d.scale) + ')');
 _this.iframe.css('transform-origin', '0 0');

 var applet = _this.fetchApplet();
 if (!applet) {
 return;
 }

 console.warn(
 d.desiredWidth,
 d.desiredHeight
)

 if (applet && applet.getAppletObject && applet.getAppletObject().setSize) {
 applet.getAppletObject().setSize(
 d.desiredWidth,
 d.desiredHeight
)
 }
 };
 _this.iframe[0].scrolling = 'no';

 _this.recalculate();
 });
 }
 var container = $('<div class="geogebra-applet-container" style="position: initial; padding:0; height:300px"></div>');
 $(this.destination).append(container);
 container.append(_this.iframe);

 this.on('resize', this.debouncedResizeHandler());
 },

 getFrameWindow() {
 if (!this.iframe) {
 return null;
 }
 return this.iframe[0].contentWindow || this.iframe[0].contentDocument.window
 },

 dispose: function () {
 this._prependUnderlay(true);
 $(this.destination).children().remove();
 this._playScreenClicked = false;
 this.off('resize', this.debouncedResizeHandler());
 },

 fetchApplet() {
 if (this.applet) {
 return this.applet;
 }
 try {
 var frameWindow = this.getFrameWindow();
 if (!frameWindow) {
 return null;
 }
 this.applet = this.getFrameWindow().ggbApplet;
 } catch (e) {
 }
 },

 thisCalculateWidths() {

 var frame = this.getFrameWindow(),
 applet = this.fetchApplet();

 if (!frame || !applet) {
 console.warn('Missing geogebra frame or window');
 return null;
 }

 try {
 if (!applet.getAppletObject().getXML) {
 return null;
 }

 var xml = jQuery.parseXML(applet.getAppletObject().getXML());
 var windowNode = $('window', xml);
 } catch (e) {
 console.error(e);
 return null;
 }

 var frameWidth = this.iframe.width(),
 appletWidth = parseFloat(windowNode.attr('width')),
 appletHeight = parseFloat(windowNode.attr('height'));

 return {
 desiredWidth: frameWidth,
 desiredHeight: frameWidth * appletHeight / appletWidth,
 width: frameWidth,
 height: frameWidth * appletHeight / appletWidth,
 // width: appletWidth,
 // height: appletHeight,
 scale: 1
 };
 },

 resizeArticleToContainer: function (container) {

 let iframeWindow = this.getFrameWindow();

 if (!iframeWindow) {
 return {
 desiredWidth: 1021,
 desiredHeight: 450,
 width: 1021,
 height: 450,
 scale: 1
 };
 }

 return this.thisCalculateWidths();

 var article = $(this.source);
 var width = parseFloat($(container).data('width')) / 100.0;
 var w = (this.fsMode ? $(window).width() : (width * $(container).width()));
 var ratio = w / article.attr('data-param-width');

 var desiredWidth = w;
 var desiredHeight = article.attr('data-param-height') * ratio;

 var maxHeight = this.maxPercentageHeight * $(window).height();
 if (this.fsMode) {
 maxHeight = $(window).height();
 }

 if (desiredHeight > maxHeight) {
 var scale = maxHeight / desiredHeight;
 desiredWidth *= scale;
 desiredHeight *= scale;
 }

 desiredWidth = Math.floor(desiredWidth);
 desiredHeight = Math.floor(desiredHeight);

 // XXX Geogebra seems to use some additional pixels to draw its border so account for that
 //article.attr('data-param-width', article.attr('data-param-width') - 3);
 //article.attr('data-param-height', desiredHeight - 3);

 return {
 desiredWidth: desiredWidth,
 desiredHeight: desiredHeight,
 width: article.attr('data-param-width') * 1,
 height: article.attr('data-param-height') * 1,
 scale: Math.min(desiredWidth / article.attr('data-param-width'), desiredHeight / article.attr('data-param-height'))
 };
 },

 getSize: function () {

 let iframeWindow = this.getFrameWindow();

 if (!iframeWindow) {
 return {
 desiredWidth: 1021,
 desiredHeight: 450,
 width: 1021,
 height: 450,
 scale: 1
 };
 }

 return this.thisCalculateWidths();

 var article = $(this.source);
 var dimensions = this.resizeArticleToContainer(this.destination);

 //return {width: article.attr('data-param-width'), height: article.attr('data-param-height')}
 return {width: dimensions.desiredWidth, height: dimensions.desiredHeight}
 },
 license: function () {
 return {
 type: 'source',
 src: apiUtils.buildUrl($('base').data('womi-url-pattern'), {
 womi_id: this._parentOptions.womiId,
 version: 1,
 path: 'metadata.json'
 })
 }
 },

 createSplashscreen() {
 return $('<div class="image-container" data-alt="" data-display-mode="2d" data-src="/static/img/geogebra-placeholder.png" data-width="100%"></div>')
 },

 });

 return GeogebraEngine;
});

24cf6809241375a995c486661637d4d6534240f6.js
define(['require', 'jquery', 'bowser', 'backbone', './EngineInterface'], function (require, $, bowser, Backbone, EngineInterface) {

 function SwiffyEngineScriptUrl(version) {
 var enginesPattern = '{% autoescape off %}{{ EXTERNAL_ENGINES.swiffypattern.url_template }}{% endautoescape %}';

 return '{{ STATIC_URL }}' + enginesPattern.replace('{ver}', version);
 }

 function getVersion(data){
 var pattern = /SwiffyEngineScriptUrl\('([0-9].[0-9]?)'\)/;
 var match = data.match(pattern);
 if(match && match[1]){
 return match[1];
 }
 return '6.0';
 }

 return EngineInterface.extend({

 load: function () {
 this.internalWindow = null;
 var srcUrl = this.source;
 var dimensions = {
 width: $(this.destination).width(),
 height: $(this.destination).width() * this._opts.heightRatio
 };

 var maxHeight = this.maxPercentageHeight * $(window).height();
 if (this.fsMode) {
 maxHeight = $(window).height();
 }

 if (dimensions.height > maxHeight) {
 var scale = maxHeight / dimensions.height;
 dimensions.width *= scale;
 dimensions.height *= scale;
 }
 this._prependUnderlay(false);
 if (!this.fsMode) {
 if (this._initPlayScreen(dimensions)) {
 this.on('resize', this.debouncedResizeHandler());
 return;
 } else {
 this.off('resize', this.debouncedResizeHandler());
 }
 }
 var _this = this;
 if (navigator.userAgent.indexOf("MSIE") != -1) {

 $.get(srcUrl, function (data) {
 _this.createIframe(_this.destination, dimensions, function (iframe) {
 var scriptSrc = SwiffyEngineScriptUrl(getVersion(data));
 var scriptSrcPattern = /var scriptSrc = .*;/;
 var documentDomainPattern = /document\.domain .*;/;
 var newData = data.replace(scriptSrcPattern, 'var scriptSrc = \"' + scriptSrc + '\";');
 newData = newData.replace(documentDomainPattern, '');
 iframe[0].contentWindow.document.write(newData);
 _this.internalWindow = iframe[0].contentWindow;
 iframe.contents().find('#swiffycontainer').css('width', dimensions.width + "px").css('height', dimensions.height + "px");
 }, function (iframe) {
 //pass
 });

 _this.on('resize', _this.debouncedResizeHandler());
 }, null, 'html');
 } else {
 this.createIframe(this.destination, dimensions, function (iframe) {
 iframe.contents().find('#swiffycontainer').css('width', dimensions.width + "px").css('height', dimensions.height + "px");
 _this.internalWindow = iframe[0].contentWindow;
 }, function (iframe) {
 iframe[0].src = srcUrl;
 });

 this.on('resize', this.debouncedResizeHandler());
 }

 },

 dispose: function () {
 this._prependUnderlay(true);
 $(this.destination).children().remove();
 this._playScreenClicked = false;
 this.internalWindow = null;
 this.off('resize', this.debouncedResizeHandler());
 },

 getSize: function () {
 var hRatio = this._opts.heightRatio;

 return {width: 900, height: 900 * hRatio}
 },

 getButtons: function () {
 var _this = this;
 return {
 stop: function () {
 _this.dispose();
 _this.load();
 },
 pause: function () {
 if (_this.internalWindow != null) {
 if (this.paused) {
 _this.internalWindow.stageObj.start();
 this.paused = false;
 } else {
 _this.internalWindow.stageObj.stop();
 this.paused = true;
 }
 } else {
 _this._playScreenClicked = true;
 _this.load();
 }

 }
 }
 }
 });
});

47d8d4c741cbc986eede0dcb778a17e38fde9ed1.js
define(
 ['require', 'jquery', 'modules/core/engines/EngineInterface', 'underscore'],
 function (require, $, EngineInterface, _) {

 var MultibookEngine = Backbone.View.extend({});
 _.extend(MultibookEngine.prototype, EngineInterface.prototype, {
 iframe: null,

 load() {

 var context = this;
 this._playScreenClicked = true;

 this.destination
 .html('')
 .append(
 $('<div class="multibook-container">')
 .append(
 $('<div class="multibook-container_overlay">')
 .on('click', function () {
 context.playFullscreen();
 })
)
 .append(
 $('')
 .attr('src', this.splashScreen.attr('data-src'))
)
);

 this.iframe = $('<iframe frameborder="0" width="100%" height="100%" mozallowfullscreen=true webkitallowfullscreen=true allowfullscreen=true></iframe>')
 .attr('src', this.source)
 .css({
 width: 1120 + 'px',
 height: 850 + 'px'
 })

 this.iframeContainer = $('<div class="multibook_iframe-container">')
 .attr('aria-hidden', 'true')
 .append(this.iframe);

 this.destination.append(this.iframeContainer);

 this.on('resize', this.debouncedResizeHandler());
 },

 debounceBody(width, height) {

 var baseWidth = 1120,
 baseHeight = 850;

 var scale = Math.min(width / baseWidth, height / baseHeight);

 this.iframe.css('transform', 'translateX(' + Math.floor(Math.max(0, width - scale * baseWidth) / 2) + 'px) scale(' + (scale) + ')');
 },

 playFullscreen() {
 console.log('play', this.iframe)

 var context = this;

 var elem = this.iframeContainer[0];
 if (!elem) {
 return;
 }

 this.launchIntoFullscreen(elem);
 setTimeout(function () {
 context.debounceBody(
 $(window).width(),
 $(window).height()
)
 });

 },

 launchIntoFullscreen(element) {
 if (element.requestFullscreen) {
 element.requestFullscreen();
 } else if (element.mozRequestFullScreen) {
 element.mozRequestFullScreen();
 } else if (element.webkitRequestFullscreen) {
 element.webkitRequestFullscreen();
 } else if (element.msRequestFullscreen) {
 element.msRequestFullscreen();
 }
 }
 });

 return MultibookEngine;
 }
);

5a8229d286de374bbd4a7280998646f75217a0ab.js
(function () {

 /**
 * @projectName declare
 * @github http://github.com/doug-martin/declare.js
 * @header
 *
 * Declare is a library designed to allow writing object oriented code the same way in both the browser and node.js.
 *
 * ##Installation
 *
 * `npm install declare.js`
 *
 * Or [download the source](https://raw.github.com/doug-martin/declare.js/master/declare.js) ([minified](https://raw.github.com/doug-martin/declare.js/master/declare-min.js))
 *
 * ###Requirejs
 *
 * To use with requirejs place the `declare` source in the root scripts directory
 *
 * ```
 *
 * define(["declare"], function(declare){
 * return declare({
 * instance : {
 * hello : function(){
 * return "world";
 * }
 * }
 * });
 * });
 *
 * ```
 *
 *
 * ##Usage
 *
 * declare.js provides
 *
 * Class methods
 *
 * * `as(module | object, name)` : exports the object to module or the object with the name
 * * `mixin(mixin)` : mixes in an object but does not inherit directly from the object. **Note** this does not return a new class but changes the original class.
 * * `extend(proto)` : extend a class with the given properties. A shortcut to `declare(Super, {})`;
 *
 * Instance methods
 *
 * * `_super(arguments)`: calls the super of the current method, you can pass in either the argments object or an array with arguments you want passed to super
 * * `_getSuper()`: returns a this methods direct super.
 * * `_static` : use to reference class properties and methods.
 * * `get(prop)` : gets a property invoking the getter if it exists otherwise it just returns the named property on the object.
 * * `set(prop, val)` : sets a property invoking the setter if it exists otherwise it just sets the named property on the object.
 *
 *
 * ###Declaring a new Class
 *
 * Creating a new class with declare is easy!
 *
 * ```
 *
 * var Mammal = declare({
 * //define your instance methods and properties
 * instance : {
 *
 * //will be called whenever a new instance is created
 * constructor: function(options) {
 * options = options || {};
 * this._super(arguments);
 * this._type = options.type || "mammal";
 * },
 *
 * speak : function() {
 * return "A mammal of type " + this._type + " sounds like";
 * },
 *
 * //Define your getters
 * getters : {
 *
 * //can be accessed by using the get method. (mammal.get("type"))
 * type : function() {
 * return this._type;
 * }
 * },
 *
 * //Define your setters
 * setters : {
 *
 * //can be accessed by using the set method. (mammal.set("type", "mammalType"))
 * type : function(t) {
 * this._type = t;
 * }
 * }
 * },
 *
 * //Define your static methods
 * static : {
 *
 * //Mammal.soundOff(); //"Im a mammal!!"
 * soundOff : function() {
 * return "Im a mammal!!";
 * }
 * }
 * });
 *
 *
 * ```
 *
 * You can use Mammal just like you would any other class.
 *
 * ```
 * Mammal.soundOff("Im a mammal!!");
 *
 * var myMammal = new Mammal({type : "mymammal"});
 * myMammal.speak(); // "A mammal of type mymammal sounds like"
 * myMammal.get("type"); //"mymammal"
 * myMammal.set("type", "mammal");
 * myMammal.get("type"); //"mammal"
 *
 *
 * ```
 *
 * ###Extending a class
 *
 * If you want to just extend a single class use the .extend method.
 *
 * ```
 *
 * var Wolf = Mammal.extend({
 *
 * //define your instance method
 * instance: {
 *
 * //You can override super constructors just be sure to call `_super`
 * constructor: function(options) {
 * options = options || {};
 * this._super(arguments); //call our super constructor.
 * this._sound = "growl";
 * this._color = options.color || "grey";
 * },
 *
 * //override Mammals `speak` method by appending our own data to it.
 * speak : function() {
 * return this._super(arguments) + " a " + this._sound;
 * },
 *
 * //add new getters for sound and color
 * getters : {
 *
 * //new Wolf().get("type")
 * //notice color is read only as we did not define a setter
 * color : function() {
 * return this._color;
 * },
 *
 * //new Wolf().get("sound")
 * sound : function() {
 * return this._sound;
 * }
 * },
 *
 * setters : {
 *
 * //new Wolf().set("sound", "howl")
 * sound : function(s) {
 * this._sound = s;
 * }
 * }
 *
 * },
 *
 * static : {
 *
 * //You can override super static methods also! And you can still use _super
 * soundOff : function() {
 * //You can even call super in your statics!!!
 * //should return "I'm a mammal!! that growls"
 * return this._super(arguments) + " that growls";
 * }
 * }
 * });
 *
 * Wolf.soundOff(); //Im a mammal!! that growls
 *
 * var myWolf = new Wolf();
 * myWolf instanceof Mammal //true
 * myWolf instanceof Wolf //true
 *
 * ```
 *
 * You can also extend a class by using the declare method and just pass in the super class.
 *
 * ```
 * //Typical hierarchical inheritance
 * // Mammal->Wolf->Dog
 * var Dog = declare(Wolf, {
 * instance: {
 * constructor: function(options) {
 * options = options || {};
 * this._super(arguments);
 * //override Wolfs initialization of sound to woof.
 * this._sound = "woof";
 *
 * },
 *
 * speak : function() {
 * //Should return "A mammal of type mammal sounds like a growl thats domesticated"
 * return this._super(arguments) + " thats domesticated";
 * }
 * },
 *
 * static : {
 * soundOff : function() {
 * //should return "I'm a mammal!! that growls but now barks"
 * return this._super(arguments) + " but now barks";
 * }
 * }
 * });
 *
 * Dog.soundOff(); //Im a mammal!! that growls but now barks
 *
 * var myDog = new Dog();
 * myDog instanceof Mammal //true
 * myDog instanceof Wolf //true
 * myDog instanceof Dog //true
 *
 *
 * //Notice you still get the extend method.
 *
 * // Mammal->Wolf->Dog->Breed
 * var Breed = Dog.extend({
 * instance: {
 *
 * //initialize outside of constructor
 * _pitch : "high",
 *
 * constructor: function(options) {
 * options = options || {};
 * this._super(arguments);
 * this.breed = options.breed || "lab";
 * },
 *
 * speak : function() {
 * //Should return "A mammal of type mammal sounds like a
 * //growl thats domesticated with a high pitch!"
 * return this._super(arguments) + " with a " + this._pitch + " pitch!";
 * },
 *
 * getters : {
 * pitch : function() {
 * return this._pitch;
 * }
 * }
 * },
 *
 * static : {
 * soundOff : function() {
 * //should return "I'M A MAMMAL!! THAT GROWLS BUT NOW BARKS!"
 * return this._super(arguments).toUpperCase() + "!";
 * }
 * }
 * });
 *
 *
 * Breed.soundOff()//"IM A MAMMAL!! THAT GROWLS BUT NOW BARKS!"
 *
 * var myBreed = new Breed({color : "gold", type : "lab"}),
 * myBreed instanceof Dog //true
 * myBreed instanceof Wolf //true
 * myBreed instanceof Mammal //true
 * myBreed.speak() //"A mammal of type lab sounds like a woof thats domesticated with a high pitch!"
 * myBreed.get("type") //"lab"
 * myBreed.get("color") //"gold"
 * myBreed.get("sound")" //"woof"
 * ```
 *
 * ###Multiple Inheritance / Mixins
 *
 * declare also allows the use of multiple super classes.
 * This is useful if you have generic classes that provide functionality but shouldnt be used on their own.
 *
 * Lets declare a mixin that allows us to watch for property changes.
 *
 * ```
 * //Notice that we set up the functions outside of declare because we can reuse them
 *
 * function _set(prop, val) {
 * //get the old value
 * var oldVal = this.get(prop);
 * //call super to actually set the property
 * var ret = this._super(arguments);
 * //call our handlers
 * this.__callHandlers(prop, oldVal, val);
 * return ret;
 * }
 *
 * function _callHandlers(prop, oldVal, newVal) {
 * //get our handlers for the property
 * var handlers = this.__watchers[prop], l;
 * //if the handlers exist and their length does not equal 0 then we call loop through them
 * if (handlers && (l = handlers.length) !== 0) {
 * for (var i = 0; i < l; i++) {
 * //call the handler
 * handlers[i].call(null, prop, oldVal, newVal);
 * }
 * }
 * }
 *
 *
 * //the watch function
 * function _watch(prop, handler) {
 * if ("function" !== typeof handler) {
 * //if its not a function then its an invalid handler
 * throw new TypeError("Invalid handler.");
 * }
 * if (!this.__watchers[prop]) {
 * //create the watchers if it doesnt exist
 * this.__watchers[prop] = [handler];
 * } else {
 * //otherwise just add it to the handlers array
 * this.__watchers[prop].push(handler);
 * }
 * }
 *
 * function _unwatch(prop, handler) {
 * if ("function" !== typeof handler) {
 * throw new TypeError("Invalid handler.");
 * }
 * var handlers = this.__watchers[prop], index;
 * if (handlers && (index = handlers.indexOf(handler)) !== -1) {
 * //remove the handler if it is found
 * handlers.splice(index, 1);
 * }
 * }
 *
 * declare({
 * instance:{
 * constructor:function () {
 * this._super(arguments);
 * //set up our watchers
 * this.__watchers = {};
 * },
 *
 * //override the default set function so we can watch values
 * "set":_set,
 * //set up our callhandlers function
 * __callHandlers:_callHandlers,
 * //add the watch function
 * watch:_watch,
 * //add the unwatch function
 * unwatch:_unwatch
 * },
 *
 * "static":{
 *
 * init:function () {
 * this._super(arguments);
 * this.__watchers = {};
 * },
 * //override the default set function so we can watch values
 * "set":_set,
 * //set our callHandlers function
 * __callHandlers:_callHandlers,
 * //add the watch
 * watch:_watch,
 * //add the unwatch function
 * unwatch:_unwatch
 * }
 * })
 *
 * ```
 *
 * Now lets use the mixin
 *
 * ```
 * var WatchDog = declare([Dog, WatchMixin]);
 *
 * var watchDog = new WatchDog();
 * //create our handler
 * function watch(id, oldVal, newVal) {
 * console.log("watchdog's %s was %s, now %s", id, oldVal, newVal);
 * }
 *
 * //watch for property changes
 * watchDog.watch("type", watch);
 * watchDog.watch("color", watch);
 * watchDog.watch("sound", watch);
 *
 * //now set the properties each handler will be called
 * watchDog.set("type", "newDog");
 * watchDog.set("color", "newColor");
 * watchDog.set("sound", "newSound");
 *
 *
 * //unwatch the property changes
 * watchDog.unwatch("type", watch);
 * watchDog.unwatch("color", watch);
 * watchDog.unwatch("sound", watch);
 *
 * //no handlers will be called this time
 * watchDog.set("type", "newDog");
 * watchDog.set("color", "newColor");
 * watchDog.set("sound", "newSound");
 *
 *
 * ```
 *
 * ###Accessing static methods and properties witin an instance.
 *
 * To access static properties on an instance use the `_static` property which is a reference to your constructor.
 *
 * For example if your in your constructor and you want to have configurable default values.
 *
 * ```
 * consturctor : function constructor(opts){
 * this.opts = opts || {};
 * this._type = opts.type || this._static.DEFAULT_TYPE;
 * }
 * ```
 *
 *
 *
 * ###Creating a new instance of within an instance.
 *
 * Often times you want to create a new instance of an object within an instance. If your subclassed however you cannot return a new instance of the parent class as it will not be the right sub class. `declare` provides a way around this by setting the `_static` property on each isntance of the class.
 *
 * Lets add a reproduce method `Mammal`
 *
 * ```
 * reproduce : function(options){
 * return new this._static(options);
 * }
 * ```
 *
 * Now in each subclass you can call reproduce and get the proper type.
 *
 * ```
 * var myDog = new Dog();
 * var myDogsChild = myDog.reproduce();
 *
 * myDogsChild instanceof Dog; //true
 * ```
 *
 * ###Using the `as`
 *
 * `declare` also provides an `as` method which allows you to add your class to an object or if your using node.js you can pass in `module` and the class will be exported as the module.
 *
 * ```
 * var animals = {};
 *
 * Mammal.as(animals, "Dog");
 * Wolf.as(animals, "Wolf");
 * Dog.as(animals, "Dog");
 * Breed.as(animals, "Breed");
 *
 * var myDog = new animals.Dog();
 *
 * ```
 *
 * Or in node
 *
 * ```
 * Mammal.as(exports, "Dog");
 * Wolf.as(exports, "Wolf");
 * Dog.as(exports, "Dog");
 * Breed.as(exports, "Breed");
 *
 * ```
 *
 * To export a class as the `module` in node
 *
 * ```
 * Mammal.as(module);
 * ```
 *
 *
 */
 function createDeclared() {
 var arraySlice = Array.prototype.slice, classCounter = 0, Base, forceNew = new Function();

 var SUPER_REGEXP = /(super)/g;

 function argsToArray(args, slice) {
 slice = slice || 0;
 return arraySlice.call(args, slice);
 }

 function isArray(obj) {
 return Object.prototype.toString.call(obj) === "[object Array]";
 }

 function isObject(obj) {
 var undef;
 return obj !== null && obj !== undef && typeof obj === "object";
 }

 function isHash(obj) {
 var ret = isObject(obj);
 return ret && obj.constructor === Object;
 }

 var isArguments = function _isArguments(object) {
 return Object.prototype.toString.call(object) === '[object Arguments]';
 };

 if (!isArguments(arguments)) {
 isArguments = function _isArguments(obj) {
 return !!(obj && obj.hasOwnProperty("callee"));
 };
 }

 function indexOf(arr, item) {
 if (arr && arr.length) {
 for (var i = 0, l = arr.length; i < l; i++) {
 if (arr[i] === item) {
 return i;
 }
 }
 }
 return -1;
 }

 function merge(target, source, exclude) {
 var name, s;
 for (name in source) {
 if (source.hasOwnProperty(name) && indexOf(exclude, name) === -1) {
 s = source[name];
 if (!(name in target) || (target[name] !== s)) {
 target[name] = s;
 }
 }
 }
 return target;
 }

 function callSuper(args, a) {
 var meta = this.__meta,
 supers = meta.supers,
 l = supers.length, superMeta = meta.superMeta, pos = superMeta.pos;
 if (l > pos) {
 args = !args ? [] : (!isArguments(args) && !isArray(args)) ? [args] : args;
 var name = superMeta.name, f = superMeta.f, m;
 do {
 m = supers[pos][name];
 if ("function" === typeof m && (m = m._f || m) !== f) {
 superMeta.pos = 1 + pos;
 return m.apply(this, args);
 }
 } while (l > ++pos);
 }

 return null;
 }

 function getSuper() {
 var meta = this.__meta,
 supers = meta.supers,
 l = supers.length, superMeta = meta.superMeta, pos = superMeta.pos;
 if (l > pos) {
 var name = superMeta.name, f = superMeta.f, m;
 do {
 m = supers[pos][name];
 if ("function" === typeof m && (m = m._f || m) !== f) {
 superMeta.pos = 1 + pos;
 return m.bind(this);
 }
 } while (l > ++pos);
 }
 return null;
 }

 function getter(name) {
 var getters = this.__getters__;
 if (getters.hasOwnProperty(name)) {
 return getters[name].apply(this);
 } else {
 return this[name];
 }
 }

 function setter(name, val) {
 var setters = this.__setters__;
 if (isHash(name)) {
 for (var i in name) {
 var prop = name[i];
 if (setters.hasOwnProperty(i)) {
 setters[name].call(this, prop);
 } else {
 this[i] = prop;
 }
 }
 } else {
 if (setters.hasOwnProperty(name)) {
 return setters[name].apply(this, argsToArray(arguments, 1));
 } else {
 return this[name] = val;
 }
 }
 }

 function defaultFunction() {
 var meta = this.__meta || {},
 supers = meta.supers,
 l = supers.length, superMeta = meta.superMeta, pos = superMeta.pos;
 if (l > pos) {
 var name = superMeta.name, f = superMeta.f, m;
 do {
 m = supers[pos][name];
 if ("function" === typeof m && (m = m._f || m) !== f) {
 superMeta.pos = 1 + pos;
 return m.apply(this, arguments);
 }
 } while (l > ++pos);
 }
 return null;
 }

 function functionWrapper(f, name) {
 if (f.toString().match(SUPER_REGEXP)) {
 var wrapper = function wrapper() {
 var ret, meta = this.__meta || {};
 var orig = meta.superMeta;
 meta.superMeta = {f: f, pos: 0, name: name};
 switch (arguments.length) {
 case 0:
 ret = f.call(this);
 break;
 case 1:
 ret = f.call(this, arguments[0]);
 break;
 case 2:
 ret = f.call(this, arguments[0], arguments[1]);
 break;

 case 3:
 ret = f.call(this, arguments[0], arguments[1], arguments[2]);
 break;
 default:
 ret = f.apply(this, arguments);
 }
 meta.superMeta = orig;
 return ret;
 };
 wrapper._f = f;
 return wrapper;
 } else {
 f._f = f;
 return f;
 }
 }

 function defineMixinProps(child, proto) {

 var operations = proto.setters || {}, __setters = child.__setters__, __getters = child.__getters__;
 for (var i in operations) {
 if (!__setters.hasOwnProperty(i)) { //make sure that the setter isnt already there
 __setters[i] = operations[i];
 }
 }
 operations = proto.getters || {};
 for (i in operations) {
 if (!__getters.hasOwnProperty(i)) { //make sure that the setter isnt already there
 __getters[i] = operations[i];
 }
 }
 for (var j in proto) {
 if (j !== "getters" && j !== "setters") {
 var p = proto[j];
 if ("function" === typeof p) {
 if (!child.hasOwnProperty(j)) {
 child[j] = functionWrapper(defaultFunction, j);
 }
 } else {
 child[j] = p;
 }
 }
 }
 }

 function mixin() {
 var args = argsToArray(arguments), l = args.length;
 var child = this.prototype;
 var childMeta = child.__meta, thisMeta = this.__meta, bases = child.__meta.bases, staticBases = bases.slice(),
 staticSupers = thisMeta.supers || [], supers = childMeta.supers || [];
 for (var i = 0; i < l; i++) {
 var m = args[i], mProto = m.prototype;
 var protoMeta = mProto.__meta, meta = m.__meta;
 !protoMeta && (protoMeta = (mProto.__meta = {proto: mProto || {}}));
 !meta && (meta = (m.__meta = {proto: m.__proto__ || {}}));
 defineMixinProps(child, protoMeta.proto || {});
 defineMixinProps(this, meta.proto || {});
 //copy the bases for static,

 mixinSupers(m.prototype, supers, bases);
 mixinSupers(m, staticSupers, staticBases);
 }
 return this;
 }

 function mixinSupers(sup, arr, bases) {
 var meta = sup.__meta;
 !meta && (meta = (sup.__meta = {}));
 var unique = sup.__meta.unique;
 !unique && (meta.unique = "declare" + ++classCounter);
 //check it we already have this super mixed into our prototype chain
 //if true then we have already looped their supers!
 if (indexOf(bases, unique) === -1) {
 //add their id to our bases
 bases.push(unique);
 var supers = sup.__meta.supers || [], i = supers.length - 1 || 0;
 while (i >= 0) {
 mixinSupers(supers[i--], arr, bases);
 }
 arr.unshift(sup);
 }
 }

 function defineProps(child, proto) {
 var operations = proto.setters,
 __setters = child.__setters__,
 __getters = child.__getters__;
 if (operations) {
 for (var i in operations) {
 __setters[i] = operations[i];
 }
 }
 operations = proto.getters || {};
 if (operations) {
 for (i in operations) {
 __getters[i] = operations[i];
 }
 }
 for (i in proto) {
 if (i != "getters" && i != "setters") {
 var f = proto[i];
 if ("function" === typeof f) {
 var meta = f.__meta || {};
 if (!meta.isConstructor) {
 child[i] = functionWrapper(f, i);
 } else {
 child[i] = f;
 }
 } else {
 child[i] = f;
 }
 }
 }

 }

 function _export(obj, name) {
 if (obj && name) {
 obj[name] = this;
 } else {
 obj.exports = obj = this;
 }
 return this;
 }

 function extend(proto) {
 return declare(this, proto);
 }

 function getNew(ctor) {
 // create object with correct prototype using a do-nothing
 // constructor
 forceNew.prototype = ctor.prototype;
 var t = new forceNew();
 forceNew.prototype = null;	// clean up
 return t;
 }

 function __declare(child, sup, proto) {
 var childProto = {}, supers = [];
 var unique = "declare" + ++classCounter, bases = [], staticBases = [];
 var instanceSupers = [], staticSupers = [];
 var meta = {
 supers: instanceSupers,
 unique: unique,
 bases: bases,
 superMeta: {
 f: null,
 pos: 0,
 name: null
 }
 };
 var childMeta = {
 supers: staticSupers,
 unique: unique,
 bases: staticBases,
 isConstructor: true,
 superMeta: {
 f: null,
 pos: 0,
 name: null
 }
 };

 if (isHash(sup) && !proto) {
 proto = sup;
 sup = Base;
 }

 if ("function" === typeof sup || isArray(sup)) {
 supers = isArray(sup) ? sup : [sup];
 sup = supers.shift();
 child.__meta = childMeta;
 childProto = getNew(sup);
 childProto.__meta = meta;
 childProto.__getters__ = merge({}, childProto.__getters__ || {});
 childProto.__setters__ = merge({}, childProto.__setters__ || {});
 child.__getters__ = merge({}, child.__getters__ || {});
 child.__setters__ = merge({}, child.__setters__ || {});
 mixinSupers(sup.prototype, instanceSupers, bases);
 mixinSupers(sup, staticSupers, staticBases);
 } else {
 child.__meta = childMeta;
 childProto.__meta = meta;
 childProto.__getters__ = childProto.__getters__ || {};
 childProto.__setters__ = childProto.__setters__ || {};
 child.__getters__ = child.__getters__ || {};
 child.__setters__ = child.__setters__ || {};
 }
 child.prototype = childProto;
 if (proto) {
 var instance = meta.proto = proto.instance || {};
 var stat = childMeta.proto = proto.static || {};
 stat.init = stat.init || defaultFunction;
 defineProps(childProto, instance);
 defineProps(child, stat);
 if (!instance.hasOwnProperty("constructor")) {
 childProto.constructor = instance.constructor = functionWrapper(defaultFunction, "constructor");
 } else {
 childProto.constructor = functionWrapper(instance.constructor, "constructor");
 }
 } else {
 meta.proto = {};
 childMeta.proto = {};
 child.init = functionWrapper(defaultFunction, "init");
 childProto.constructor = functionWrapper(defaultFunction, "constructor");
 }
 if (supers.length) {
 mixin.apply(child, supers);
 }
 if (sup) {
 //do this so we mixin our super methods directly but do not ov
 merge(child, merge(merge({}, sup), child));
 }
 childProto._super = child._super = callSuper;
 childProto._getSuper = child._getSuper = getSuper;
 childProto._static = child;
 }

 function declare(sup, proto) {
 function declared() {
 switch (arguments.length) {
 case 0:
 this.constructor.call(this);
 break;
 case 1:
 this.constructor.call(this, arguments[0]);
 break;
 case 2:
 this.constructor.call(this, arguments[0], arguments[1]);
 break;
 case 3:
 this.constructor.call(this, arguments[0], arguments[1], arguments[2]);
 break;
 default:
 this.constructor.apply(this, arguments);
 }
 }

 __declare(declared, sup, proto);
 return declared.init() || declared;
 }

 function singleton(sup, proto) {
 var retInstance;

 function declaredSingleton() {
 if (!retInstance) {
 this.constructor.apply(this, arguments);
 retInstance = this;
 }
 return retInstance;
 }

 __declare(declaredSingleton, sup, proto);
 return declaredSingleton.init() || declaredSingleton;
 }

 Base = declare({
 instance: {
 "get": getter,
 "set": setter
 },

 "static": {
 "get": getter,
 "set": setter,
 mixin: mixin,
 extend: extend,
 as: _export
 }
 });

 declare.singleton = singleton;
 return declare;
 }

 if ("undefined" !== typeof exports) {
 if ("undefined" !== typeof module && module.exports) {
 module.exports = createDeclared();
 }
 } else if ("function" === typeof define && define.amd) {
 define(createDeclared);
 } else {
 this.declare = createDeclared();
 }
}());

85472943fcaa54a026861a6e220c9c4ccf2b857e.js
define(['libs/avplayer/player.ext', 'modules/utils/EmbedLinkGenerator'], function (player, EmbedLinkGenerator) {

 return function apiListener(_this, window, frame, api, commapi, avatarapi) {

 var objects = {
 api: {
 setLocalUserVar: function (frame) {
 api.setLocalUserVar(arguments[1], arguments[2]);
 },
 getLocalUserVar: function (frame) {
 var v = api.getLocalUserVar(arguments[1]);
 frame.postMessage({eventName: 'getLocalUserVar', varName: arguments[1], value: v}, '*');
 },
 setUserAnswer: function (frame, varName, value) {
 api.setUserAnswer(value);
 },
 setUserVar: function (varName, value) {
 api.setUserVar(arguments[1], arguments[2], function () {
 });
 },
 getUserVar: function (frame, varName) {
 api.getUserVar(varName, function (data) {
 frame.postMessage({eventName: 'getUserVar', varName: varName, value: data}, '*');
 });
 },
 getAudioUrl: function (frame) {
 var id = arguments[1];
 api.getAudioUrl(id, function (url) {
 frame.postMessage({
 eventName: 'getAudioUrl',
 varName: id,
 value: url
 }, '*');
 })
 },
 getVideoUrl: function (frame) {
 var id = arguments[1];
 api.getVideoUrl(id, function (url) {
 frame.postMessage({
 eventName: 'getVideoUrl',
 varName: id,
 value: url
 }, '*');
 })
 },
 getPosition: function (frame) {
 var p = _this.getPosition();
 p = JSON.stringify(p);
 p = JSON.parse(p);
 p.outerWindowWidth = $(window).width();
 p.outerWindowHeight = $(window).height();
 frame.postMessage({eventName: 'getPosition', varName: 'pos', value: p}, '*');

 },
 getModes: function (frame) {
 frame.postMessage({eventName: 'getModes', varName: 'modes', value: api.getModes()}, '*');
 },
 getUserInfo: function (frame) {
 api.getUserInfo(function (data) {
 frame.postMessage({eventName: 'getUserInfo', varName: 'userInfo', value: data}, '*');
 });
 },
 sendMail: function (frame, varName, data) {
 api.sendMail(data);
 },

 getTileSize: function (frame) {
 var size = {
 tiledLayout: false
 };
 var grid = $('[data-grid-width]');
 if (_this.destination && _this.destination.closest('.tile').length && grid.length) {
 var tile = _this.destination.closest('.tile');
 size = {
 tiledLayout: true,
 tileWidth: tile.data('width'),
 tileHeight: tile.data('height'),
 tileLeft: tile.data('left'),
 tileTop: tile.data('top'),
 gridWidth: grid.data('grid-width'),
 gridHeight: grid.data('grid-height')
 };
 }
 frame.postMessage({eventName: 'getTileSize', varName: 'tileSize', value: size}, '*');
 },
 maximize: function (frame) {
 _this.maximize();
 },
 closeMaximize: function (frame) {
 _this.closeMaximize();
 },
 saveFile: function (frame, filename, fileData, descriptor) {
 api.saveFile(filename, fileData, descriptor, function (data) {
 frame.postMessage({eventName: 'saveFile', filename: filename, value: data}, '*');
 });
 },
 saveImageFile: function (frame, filename, fileData, descriptor) {
 api.saveFile(filename, fileData, descriptor, function (data) {
 frame.postMessage({eventName: 'saveImageFile', filename: filename, value: data}, '*');
 });
 },
 getFileUrl: function (frame, descriptor) {
 var url = api.getFileUrl(descriptor);
 frame.postMessage({eventName: 'getFileUrl', varName: descriptor, value: url}, '*');
 }

 },
 commapi: {
 listen: function (frame) {
 var args = arguments;
 commapi.listen(args[0], function (data) {
 frame.postMessage({eventName: args[0], data: data}, '*');
 });
 },
 trigger: function (frame) {
 commapi.trigger.apply(commapi, arguments);
 }
 },
 avatarapi: avatarapi
 };

 var callback = function (event) {
 if (frame == event.originalEvent.source) {
 if (event.originalEvent.data.object) {
 var ob = objects[event.originalEvent.data.object];
 ob[event.originalEvent.data.method].apply(ob, event.originalEvent.data.args);
 }
 } else if (null === frame) {
 if (event.originalEvent.data.object) {
 var method = event.originalEvent.data.method;
 var ob = objects[event.originalEvent.data.object];
 if (method == 'getAudioUrl' || method == 'getVideoUrl') {

 var args = Cp.toArray(event.originalEvent.data.args);
 args.unshift(event.originalEvent.source);
 ob[method].apply(ob, args);
 } else {
 console.warn('Not supported message received', event.originalEvent.data.object);
 }
 }
 }
 };

 $(window).on('message', callback);

 var closeHandler = EmbedLinkGenerator.connectEmbedUrlGenerator(window, frame);

 return function () {
 $(window).off('message', callback);
 closeHandler();
 }
 }
});

e405c1a9b8f307f5b1e956dbe04957fa9c6da33b.js
define(['underscore', 'jquery'], function (_, $) {
 'use strict';
 return {
 replaceUrlArgs: function(url, args){
 for(var a in args){
 url = url.replace('{' + a + '}', args[a]);
 }
 return url;
 },

 namedPatternUrl: function(patternName, args){
 var base = $('base');
 var pattern = base.data(patternName);
 if(pattern){
 return this.replaceUrlArgs(pattern, args);
 }
 return '';
 }
 }
});

b21b4868dbaa05de3f0b0cd12d3a0eaed56a19de.js
define(['jquery', 'endpoint_tools'], function($, endpoint_tools){

 return {
 connectEmbedUrlGenerator: function(wnd, frame){
 var f = function (e) {
 var response = {
 'getVideoEmbedUrl': 'videoEmbedUrl',
 'getAudioEmbedUrl': 'audioEmbedUrl'
 };

 if (e.originalEvent.data.msg == 'getVideoEmbedUrl' ||
 e.originalEvent.data.msg == 'getAudioEmbedUrl') {

 var womiId = e.originalEvent.data.womiId;
 var womiVersion = e.originalEvent.data.womiVersion;
 if(e.originalEvent.source == frame) {
 e.originalEvent.source.postMessage({
 msg: response[e.originalEvent.data.msg],
 url: endpoint_tools.replaceUrlArgs($('base').data('womi-embed-pattern'), {
 womi_id: womiId,
 version: womiVersion
 }),
 womiId: womiId,
 womiVersion: womiVersion,
 key: (e.originalEvent.data.key ? e.originalEvent.data.key : null)
 }, '*');
 }
 }
 };

 $(wnd).on('message', f);

 return function(){
 //disconnect
 $(wnd).off('message', f);
 }
 }
 }
});

dc9059d6fe162274724b00eb1424bbad7439460b.js
define(['require', 'jquery', 'bowser', 'backbone', './EngineInterface'], function (require, $, bowser, Backbone, EngineInterface) {
 var readerDefinition = $('#reader-definition');

 readerDefinition = {
 stylesheet: readerDefinition.data('stylesheet'),
 env: readerDefinition.data('environment-type')
 };

 return EngineInterface.extend({
 _playScreenClicked: true, //temporary!!!
 _calcDimensions: function (isAvatar) {
 var hR = this._opts.heightRatio;
 var tile = this.destination.closest('.tile');
 var dimensions = {
 width: $(this.destination).width(),
 height: $(this.destination).width() * (hR ? hR : 1)
 };

 var maxHeight = this.maxPercentageHeight * $(window).height();
 if (tile.length > 0) {
 if (!tile.hasClass('anchor-padding')) {
 maxHeight = tile.height() * this.maxPercentageHeight;
 }
 //_this._mainContainerElement.closest('.womi-container').find('.title').hide();
 }

 if (this.fsMode) {
 maxHeight = $(window).height();

 var manifestParameters = {};
 try {
 manifestParameters = this._opts.manifest.parameters.object || {};
 } catch (e) {
 manifestParameters = {};
 }

 if (manifestParameters.fullscreenFullWidth) {
 var scaleUp = $(window).width() / dimensions.width;
 dimensions.width *= scaleUp;
 dimensions.height *= scaleUp;
 }
 }
 if (dimensions.height > maxHeight) {
 var scale = maxHeight / dimensions.height;
 dimensions.width *= scale;
 dimensions.height *= scale;
 }
 return dimensions;
 },

 _calcMaximized: function () {
 return {
 height: $(window).height() - 10,
 width: $(window).width() - 10
 };
 },

 _calcContainer: function () {
 if (this.roles.avatar) {
 var a = $(window).height() * 0.25;
 $(this._womiContainer()).css({
 'position': 'fixed',
 'bottom': '0px',
 'left': '80px',
 padding: 0,
 width: a,
 height: a
 });
 }
 },

 _modifyPlayDiv: function (div) {
 //var dimm = this._calcDimensions(this.obj && this.obj.isAvatar);

 //div.css('min-height', dimm.height);
 },

 additionalOpts: function (require, obj, ReaderApi) {
 return {};
 },

 getSource: function () {
 return this.source;
 },

 load: function () {

 var _this = this;
 require(['require', this.getSource(), 'reader.api'], function (require, lib, ReaderApi) {
 if (!lib) {
 console.error('Invalid WOMI has been loaded', _this.getSource());
 return;
 }

 _this.obj = new lib();
// if(readerDefinition.env == 'ee' || readerDefinition.env == 'early-education'){
// _this.obj.enableMaximize = true;
// }

 _this._calcContainer();
 var dimensions = _this._calcDimensions(_this.roles.avatar);
 if (!_this.roles.avatar) {
 if (!_this.fsMode) {
 if (readerDefinition.env == 'uwr') {
 _this._playScreenClicked = true;
 }
 if (_this._initPlayScreen(dimensions)) {
 _this.on('resize', _this.debouncedResizeHandler());
 return;
 } else {
 _this.off('resize', _this.debouncedResizeHandler());
 if (_this.obj.enableMaximize) {
 _this.savedStyle = _this.destination.attr('style');
 _this.destination.css({
 'background-color': 'white',
 position: 'fixed',
 top: '5px',
 left: '5px',
 'z-index': '100000'
 });
 dimensions = _this._calcMaximized();
 _this.destination.css({
 width: dimensions.width + 'px',
 height: dimensions.height + 'px'
 });

 }
 }
 }
 }

 if (_this.obj.sizeChange) {
 _this.obj.sizeChange(dimensions.width, dimensions.height);
 }

 var opts = {
 width: dimensions.width,
 height: dimensions.height,
 isFullscreen: _this.fsMode,
 methods: {
 openFullscreen: function () {

 _this.destination[0].dispatchEvent(_this._fsEvent());
 },
 closeFullscreen: function () {
 $.fancybox.close(true);
 }
 }
 };
 if (_this.obj.enableMaximize) {
 opts.methods = {
 closeWomi: function () {
 _this.dispose();
 _this.destination.attr('style', _this.savedStyle);
 _this.load();
 }
 }
 }

 _.extend(opts, _this.additionalOpts(require, _this.obj, ReaderApi));

 _this.obj.start(_this.destination, opts);
 _this.on('resize', _this.debouncedResizeHandler());
 });

 },
 dispose: function () {
 try {
 if (this.obj) {
 if (this.obj.clean) {
 this.obj.clean();
 }

 $(this.destination).children().remove();
 this._playScreenClicked = false;
 this.off('resize', this.debouncedResizeHandler());
 }

 } catch (err) {
 console.error(err);
 }

 },
 debounceBody: function (width, height) {
 try {
 this._calcContainer();
 var dimensions = this._calcDimensions(this.roles.avatar);
 if (this.obj.enableMaximize) {
 dimensions = this._calcMaximized();
 }
 if (this.obj.sizeChange) {
 this.obj.sizeChange(dimensions.width, dimensions.height);
 }
 } catch (err) {
 console.error(err);
 }
 },
 hasFullscreen: function () {
 return true;
 },
 getSize: function () {
 return this._calcDimensions(false);
 }
 });
});

233514106f41cb9db7124d24cc2c4b819e5756b5.js
define(['./EngineInterface', 'modules/i18n', 'jquery', 'declare'], function (EngineInterface, i18n, $) {
 return EngineInterface.extend({
 load: function () {
 var fileSource = this.source;
 $(this.destination).html(
 "<div style='display: flex; justify-content: center; margin: 1rem;'>" +
 "" +
 i18n._('Pobierz') +
 "</div>");
 },
 hasFullscreen: function () {
 return false;
 },
 })
});

8617bc3ef993f3747e8dd86de72bcf2ccdf8057e.js
define(['jquery'], function($){

if (!String.prototype.format) {
 String.prototype.format = function () {
 var args = arguments;
 return this.replace(/{(\d+)}/g, function (match, number) {
 return typeof args[number] != 'undefined' ? args[number] : match;
 });
 };
}

var MediaType = { Video: 1, Audio: 2 };
var QualityLevels = { None: 0, High: 1080, Medium: 720, Low: 360, Lowest: 270 };
var UrlType = { Material: 0, Subtitle: 1, Metadata: 2 };

function Metadata(id, isVideo) {
 if (isVideo)
 this.Profiles = ["mp4_vlow_bl", "mp4_low_bl", "mp4_med_ml", "mp4_hi_hl", "webm_med", "webm_hi"];
 else
 this.Profiles = ["audio_low_aac", "audio_med_aac", "audio_med_ogg"];

 this.Subtitles = [];
 this.AltAudio = 0;
 this.MaterialId = id;
 this.AllowDistribution = true;
 this.Duration = 0;
}

var UrlUtil = (function () {
 function getHighestVideoLevel(profile) {
 if (profile[QualityLevels.High])
 return QualityLevels.High;
 else if (profile[QualityLevels.Medium])
 return QualityLevels.Medium;
 else if (profile[QualityLevels.Low])
 return QualityLevels.Low;
 else if (profile[QualityLevels.Lowest])
 return QualityLevels.Lowest;
 else
 return QualityLevels.None;
 }

 return {
 BuildUrl: function (id, urlType) {
 var addHashCode = true;
 var hashCodeStart = '!';

 var RepositoryGlobalSettings = {
 url: "http://av.epodreczniki.pl/RepositoryAccess/",
 subtitles_url: "//www.{{ TOP_DOMAIN }}/reader/utils/av/",
 metadata_url: "//www.{{ TOP_DOMAIN }}/reader/utils/av/meta/"
 };

 function generateHashCode(id) {
 var hash = 238;
 for (var i = 0; i < id.length; i++) {
 hash = hash ^ id.charCodeAt(i);
 }
 hash = 65 + hash % 25;
 var letter = String.fromCharCode(hash);
 return letter;
 }

 var path = '';
 var baseUrl;
 switch (urlType) {
 case UrlType.Material:
 baseUrl = RepositoryGlobalSettings.url
 break;
 case UrlType.Subtitle:
 baseUrl = RepositoryGlobalSettings.subtitles_url
 break;
 case UrlType.Metadata:
 baseUrl = RepositoryGlobalSettings.metadata_url
 break;
 }

 if (addHashCode)
 path = baseUrl + hashCodeStart + generateHashCode(String(id)) + id;
 else
 path = baseUrl + id;
 return path;
 },

 UpdateProfilesList: function (metadata) {
 function mergeProfiles(current, main) {
 var intermediate = [];
 var result = [];
 for (var i in current) {
 if (current.hasOwnProperty(i)) {
 intermediate[i] = '(,,' + current[i] + ')';
 }
 }

 for (var item in main) {
 if (main.hasOwnProperty(item)) {
 var value = main[item];
 var index = $.inArray(value, intermediate);
 if (index != -1) {
 result[item] = main[item];
 }
 }
 }

 return result;
 }

 var Profiles = [];
 Profiles["webm"] = { 0: "", 1080: "(,,webm_hi)", 720: "(,,webm_hi)", 360: "(,,webm_med)", 270: "(,,webm_med)" };
 Profiles["mp4"] = { 0: "", 1080: "(,,mp4_hi_hl)", 720: "(,,mp4_med_ml)", 360: "(,,mp4_low_bl)", 270: "(,,mp4_vlow_bl)" };

 var AudioProfiles = [];
 AudioProfiles["mp4"] = { 0: "(,,audio_low_aac)", 1: "(,,audio_med_aac)" };
 AudioProfiles["ogg"] = { 0: "(,,audio_med_ogg)", 1: "(,,audio_med_ogg)" };

 var udpadetProfiles = [];

 if (metadata != null && metadata.hasOwnProperty('Profiles')) {
 var isAudio = false;
 for (var i = 0; i < metadata.Profiles.length; i++)
 if (metadata.Profiles[i].indexOf('audio_') >= 0)
 isAudio = true;

 if (isAudio) {
 var mp4 = mergeProfiles(metadata.Profiles, AudioProfiles["mp4"]);
 var ogg = mergeProfiles(metadata.Profiles, AudioProfiles["ogg"]);
 udpadetProfiles["mp4"] = mp4;
 udpadetProfiles["ogg"] = ogg;
 }
 else {
 var mp4 = mergeProfiles(metadata.Profiles, Profiles["mp4"]);
 var webm = mergeProfiles(metadata.Profiles, Profiles["webm"]);

 udpadetProfiles["mp4"] = mp4;
 udpadetProfiles["webm"] = webm;
 var highestMp4 = getHighestVideoLevel(udpadetProfiles["mp4"]);
 var highestWebm = getHighestVideoLevel(udpadetProfiles["webm"]);
 if (highestMp4 != highestWebm) {
 if (highestWebm < highestMp4)
 udpadetProfiles["webm"][highestMp4] = udpadetProfiles["webm"][highestWebm];
 else {
 udpadetProfiles["mp4"][highestWebm] = udpadetProfiles["mp4"][highestMp4];
 }
 }
 }
 }

 return udpadetProfiles;
 },

 BuildMediaSource: function (mediaType, id, level, profiles, vttSubtitles, track, subtitle) {

 return {
 url: '/media/' + id
 };

 var firstType;
 var secondType;
 if (mediaType == MediaType.Audio)
 {
 firstType = "mp4";
 secondType = "ogg";
 if (level === undefined)
 level = 1;
 }
 else
 {
 firstType = "mp4";
 secondType = "webm";
 if (level === undefined)
 level = QualityLevels.Medium;
 }

 var CompareOperator = { DoNotCompare: -1, Equals: 0, LessThan: 1, GreaterThan: 2, LessOrEqual: 3, GreaterOrEqual: 4 };
 var CompareDescription = { 0: 'Equals', 1: 'LessThan', 2: 'GreaterThan', 3: 'LessOrEqual', 4: 'GreaterOrEqual', DoNotCompare: '<>', Equals: '==', LessThan: '<', GreaterThan: '>', LessOrEqual: '<=', GreaterOrEqual: '>=' };
 CompareDescription[-1] = 'DoNotCompare';
 var Devices = [
 {
 "Device": "firefox",
 "DisallowVTTSubtitles": false,
 "Version": "",
 "Pattern": "",
 "VersionOperator": CompareOperator.DoNotCompare,
 "Resolution": 0,
 "ResolutionOperator": CompareOperator.DoNotCompare,
 "Level": QualityLevels.High
 },
 {
 "Device": "windows phone",
 "DisallowVTTSubtitles": true,
 "Version": "",
 "Pattern": "",
 "VersionOperator": CompareOperator.DoNotCompare,
 "Resolution": 0,
 "ResolutionOperator": CompareOperator.DoNotCompare,
 "Level": QualityLevels.Medium
 },
 {
 "Device": "trident",
 "DisallowVTTSubtitles": true,
 "Version": "",
 "Pattern": "",
 "VersionOperator": CompareOperator.DoNotCompare,
 "Resolution": 0,
 "ResolutionOperator": CompareOperator.DoNotCompare,
 "Level": QualityLevels.High
 },
 {
 "Device": "ipod",
 "Version": "",
 "Pattern": "",
 "VersionOperator": CompareOperator.DoNotCompare,
 "Resolution": 0,
 "ResolutionOperator": CompareOperator.DoNotCompare,
 "Level": QualityLevels.Lowest
 },
 {
 "Device": "ipad",
 "Version": "",
 "Pattern": "",
 "VersionOperator": CompareOperator.DoNotCompare,
 "Resolution": 0,
 "ResolutionOperator": CompareOperator.DoNotCompare,
 "Level": QualityLevels.Medium
 },
 {
 "Device": "iphone",
 "Version": "4_0_0",
 "Pattern": /iphone os (\d+(?:_\d+)+)/i,
 "VersionOperator": CompareOperator.GreaterOrEqual,
 "Resolution": 0,
 "ResolutionOperator": CompareOperator.DoNotCompare,
 "Level": QualityLevels.Medium
 },
 {
 "Device": "iphone",
 "Version": "4_0_0",
 "Pattern": /iphone os (\d+(?:_\d+)+)/i,
 "VersionOperator": CompareOperator.LessThan,
 "Resolution": 0,
 "ResolutionOperator": CompareOperator.DoNotCompare,
 "Level": QualityLevels.Lowest
 },
 {
 "Device": "android",
 "Contains": "firefox",
 "Version": "",
 "Pattern": "",
 "VersionOperator": CompareOperator.DoNotCompare,
 "Resolution": 0,
 "ResolutionOperator": CompareOperator.DoNotCompare,
 "Level": QualityLevels.Medium
 },
 {
 "Device": "android",
 "Version": "3.0",
 "Pattern": /android (\d+(?:\.\d+)+)/i,
 "VersionOperator": CompareOperator.GreaterOrEqual,
 "Resolution": 800,
 "ResolutionOperator": CompareOperator.GreaterThan,
 "Level": QualityLevels.Medium
 },
 {
 "Device": "android",
 "Version": "3.0",
 "Pattern": /android (\d+(?:\.\d+)+)/i,
 "VersionOperator": CompareOperator.GreaterOrEqual,
 "Resolution": 800,
 "ResolutionOperator": CompareOperator.LessOrEqual,
 "Level": QualityLevels.Low
 },
 {
 "Device": "android",
 "Version": "3.0",
 "Pattern": /android (\d+(?:\.\d+)+)/i,
 "VersionOperator": CompareOperator.LessThan,
 "Resolution": 0,
 "ResolutionOperator": CompareOperator.DoNotCompare,
 "Level": QualityLevels.Lowest
 },
 {
 "Device": "opera mini",
 "Version": "",
 "Pattern": "",
 "VersionOperator": CompareOperator.DoNotCompare,
 "Resolution": 0,
 "ResolutionOperator": CompareOperator.DoNotCompare,
 "Level": QualityLevels.Lowest
 },
 {
 "Device": "opera mobi",
 "Version": "",
 "Pattern": "",
 "VersionOperator": CompareOperator.DoNotCompare,
 "Resolution": 0,
 "ResolutionOperator": CompareOperator.DoNotCompare,
 "Level": QualityLevels.Lowest
 },
 {
 "Device": "opera tablet",
 "Version": "",
 "Pattern": "",
 "VersionOperator": CompareOperator.DoNotCompare,
 "Resolution": 0,
 "ResolutionOperator": CompareOperator.DoNotCompare,
 "Level": QualityLevels.Lowest
 },
 {
 "Device": "blackberry",
 "Version": "",
 "Pattern": "",
 "VersionOperator": CompareOperator.DoNotCompare,
 "Resolution": 0,
 "ResolutionOperator": CompareOperator.DoNotCompare,
 "Level": QualityLevels.Lowest
 },
 {
 "Device": "bada",
 "Version": "",
 "Pattern": "",
 "VersionOperator": CompareOperator.DoNotCompare,
 "Resolution": 0,
 "ResolutionOperator": CompareOperator.DoNotCompare,
 "Level": QualityLevels.Lowest
 },
 {
 "Device": "mobile",
 "Version": "",
 "Pattern": "",
 "VersionOperator": CompareOperator.DoNotCompare,
 "Resolution": 0,
 "ResolutionOperator": CompareOperator.DoNotCompare,
 "Level": QualityLevels.Lowest
 }];

 function changeSubtitles(materialId, subtitle) {
 var retVal = materialId;
 var hasParenthesis = materialId.indexOf('(') != -1;
 if (hasParenthesis) {
 var firstPosition = materialId.indexOf(',');
 var secondPosition = materialId.lastIndexOf(',');
 retVal = materialId.slice(0, firstPosition + 1) + subtitle + materialId.slice(secondPosition, materialId.length);
 }
 return retVal;
 }

 function changeTracks(materialId, track) {
 var retVal = materialId;
 var hasParenthesis = materialId.indexOf('(') != -1;
 if (hasParenthesis) {
 var firstPosition = materialId.indexOf('(');
 var secondPosition = materialId.indexOf(',');
 retVal = materialId.slice(0, firstPosition + 1) + track + materialId.slice(secondPosition, materialId.length);
 }
 return retVal;
 }

 if (mediaType == MediaType.Video) {
 var derivative = id.indexOf('(') != -1 && id.indexOf(')') != -1;
 if (derivative) {

 var posOfFirstBracket = id.indexOf('(');
 var posOfComa = id.indexOf(',');
 var posOfSecondBracket = id.indexOf(')');
 track = id.slice(posOfFirstBracket + 1, posOfComa);
 subtitle = id.slice(posOfComa + 1, posOfSecondBracket);
 id = id.slice(0, posOfFirstBracket);
 }
 }

 var allowVttSubtitles = true;
 var agent = navigator.userAgent.toLowerCase() || '';
 for (i = 0; i < Devices.length; i++) {
 var device = Devices[i];
 if (device.Device) {
 if (agent.indexOf(device.Device) > -1) {
 var proper = true;

 if (device.Contains) {
 proper = agent.indexOf(device.Contains) > -1;
 }
 if (proper)
 if (device.DoNotContain) {
 proper = agent.indexOf(device.DoNotContain) == -1;
 }
 if (proper) {
 if (device.VersionOperator != CompareOperator.DoNotCompare) {
 if (device.Pattern) {
 var version = agent.match(device.Pattern);
 if (version && version.length > 1) {
 version = version[1];
 if (version) {
 switch (device.VersionOperator) {
 case CompareOperator.DoNotCompare:
 ;
 break;
 case CompareOperator.Equals:
 proper = (version == device.Version);
 break;
 case CompareOperator.LessThan:
 proper = (version < device.Version);
 break;
 case CompareOperator.GreaterThan:
 proper = (version > device.Version);
 break;
 case CompareOperator.LessOrEqual:
 proper = (version <= device.Version);
 break;
 case CompareOperator.GreaterOrEqual:
 proper = (version >= device.Version);
 break;
 default:
 ;
 }
 }
 }
 }
 }
 }
 if (proper) {
 if (device.ResolutionOperator != CompareOperator.DoNotCompare) {
 var resolution = Math.max(screen.height, screen.width);
 switch (device.ResolutionOperator) {
 case CompareOperator.DoNotCompare:;
 break;
 case CompareOperator.Equals: proper = (resolution == device.Resolution);
 break;
 case CompareOperator.LessThan: proper = (resolution < device.Resolution);
 break;
 case CompareOperator.GreaterThan: proper = (resolution > device.Resolution);
 break;
 case CompareOperator.LessOrEqual: proper = (resolution <= device.Resolution);
 break;
 case CompareOperator.GreaterOrEqual: proper = (resolution >= device.Resolution);
 break;

 default:;
 }

 }
 }
 if (proper && mediaType == MediaType.Video) {

 if(device.Level < level)
 level = device.Level;
 allowVttSubtitles = !device.DisallowVTTSubtitles;
 break;
 }
 }
 }
 }

 var result = [];
 if (mediaType == MediaType.Video) {
 var highest_level_available = getHighestVideoLevel(profiles[firstType]);
 result.maxQualityLevel = highest_level_available;
 if (highest_level_available < level) {
 result.maxQualityLevel = highest_level_available;
 level = highest_level_available;
 }
 }
 else {
 result.maxQualityLevel = 1;
 }

 if (result.maxQualityLevel > 0) {
 result[firstType] = id + profiles[firstType][level];
 result[secondType] = id + profiles[secondType][level];

 if (mediaType == MediaType.Video) {
 if (track) {
 result[firstType] = changeTracks(result[firstType], track);
 result[secondType] = changeTracks(result[secondType], track);
 }
 if (subtitle) {
 result[firstType] = changeSubtitles(result[firstType], subtitle);
 result[secondType] = changeSubtitles(result[secondType], subtitle);
 }
 }

 result[firstType] = { id: result[firstType], url: UrlUtil.BuildUrl(result[firstType], UrlType.Material) };
 result[secondType] = { id: result[secondType], url: UrlUtil.BuildUrl(result[secondType], UrlType.Material) };

 if (mediaType == MediaType.Video) {
 result.allowVttSubtitles = allowVttSubtitles;
 result.vttTracks = vttSubtitles;
 }

 result.duration = -1;
 result.url = result[firstType].url;

 }

 return result;
 }
 }

})();

function createMediaPlayer(container, id, settings, isVideo) {

 if (isVideo !== false) {
 isVideo = true;
 }

 var logoImg = "";
 var _this_ = this;

 this.Player = null;
 this.MaterialId = id;
 this.aspectRatio = 1.78;
 this.container = container;
 this.availableProfiles = null;
 this.availableVttSubtitles = null;
 this.currentMedia = null;
 this.currentQualityLevel = 720;

 var maxQualityLevel = 1080;
 var currentAudioQualityLevel = 1;
 var currentTrack = 0;
 var currentSubtitle = "";
 var currentTime = 0;
 var currentDuration = 0;
 var lastTime = 0;
 var allowVttSubtitles = true;

 var defaultVideoSettings =
 {
 altAudio: 0,
 subtitles: [],
 vttTracks: null,
 ancestor: '',
 fullscreen: false,
 autoplay: false,
 starttime: 0,
 poster: '',
 generatehtml: true,
 timeline: false,
 error_distribution: 'http://av.epodreczniki.pl/epodreczniki/images/distribution.jpg',
 error_absent: 'http://av.epodreczniki.pl/epodreczniki/images/absent.jpg',
 error_noway: 'http://av.epodreczniki.pl/epodreczniki/images/noway.jpg',
 aspectRatio: 1.77778,
 Debug: false,
 loadMetadada: "dynamic",
 autoHideNavigation: true,
 canPlayCallback: null,
 simpleAudioMode: false,
 showTranscrptionCallback: null,
 transcrptionId : ""
 }

 var EventKeys =
 {
 Control: 17,
 Pause: 19,
 Home: 36,
 Escape: 27,
 Space: 32,
 Enter: 13,
 Backspace: 8,
 Up: 38,
 Down: 40
 }

 var FullScreen =
 {
 Yes: true,
 No: false
 }

 // metadata object

 function LogToConsole(msg) {
 if (msg)
 if (console)
 if (console.log) {
 console.log(msg);
 }
 }

 this.SetNewMedia = function(mediaId)
 {
 this.MaterialId = mediaId;

 getMetadataInfo(mediaId, isVideo);
 }

 this.FillVideoQualities = function (qualityCombo, profiles, level, currentLevel) {

 var ul = qualityCombo.find('ul');
 ul.find(".dropup-menu-item").remove();

 ul.append('<li role="presentation" class="dropup-menu-item">Najwyższa');
 ul.append('<li role="presentation" class="dropup-menu-item">Wysoka');
 ul.append('<li role="presentation" class="dropup-menu-item">Średnia');
 ul.append('<li role="presentation" class="dropup-menu-item">Niska');

 if (profiles && (profiles['mp4'] || profiles['webm'])) {
 qualityCombo.find("ul li a").each(function () {
 var val = $(this).data('level');

 if (val > level) {
 $(this).parent().remove();
 }
 });
 }
 qualityCombo.find("[data-level=" + currentLevel + "] ").parent().addClass('active');

 ul.find("a").click(function () {
 qualityCombo.find('li').removeClass('active');
 $(this).parent().addClass('active');
 OnQualityTrackChange(qualityCombo);
 });
 }

 this.FillAudioQualities = function (qualityCombo, profiles, level, currentLevel) {
 var ul = qualityCombo.find('ul');
 ul.find(".dropup-menu-item").remove();

 ul.append('<li role="presentation" class="dropup-menu-item">Wysoka');
 ul.append('<li role="presentation" class="dropup-menu-item">Niska');

 qualityCombo.find("ul li a").each(function () {
 var val = $(this).data('level');

 if (val > level) {
 $(this).parent().remove();
 }
 });

 qualityCombo.find("[data-level=" + currentLevel + "] ").parent().addClass('active');

 ul.find("a").click(function () {
 qualityCombo.find('li').removeClass('active');
 $(this).parent().addClass('active');
 OnAudioQualityTrackChange(qualityCombo);
 });
 }

 this.SetVideoQuality = function(level)
 {
 var qualityCombo = $(_this_.container).find('.qualityTracks');
 qualityCombo.find('li').removeClass('active');
 qualityCombo.find("[data-level=" + level + "] ").parent().addClass('active');
 this.currentQualityLevel = level;
 }

 this.FillSubtitlesTracks = function (subtitleTracks) {
 var subtitleCombo = $(this.container).find('.subtitleTracks');

 if (subtitleTracks.length == 0) {
 subtitleCombo.hide();
 } else {
 subtitleCombo.show();
 }

 var ul = $(this.container).find('.subtitleTracks ul');// subtitleCombo.find('ul');
 ul.find(".dropup-menu-item").remove();
 ul.append('<li role="presentation" class="active dropup-menu-item">Brak');

 for (var i = 0; i < subtitleTracks.length; i++) {
 if (subtitleTracks[i] == 'captions' || subtitleTracks[i].kind == 'captions')
 {
 ul.append('<li role="presentation" class="dropup-menu-item">Napisy dla niesłyszących');

 } else
 if (subtitleTracks[i] == 'subtitles' || subtitleTracks[i].kind == 'subtitles') {
 ul.append('<li role="presentation" class="dropup-menu-item">Napisy');

 } else if (i == 0) {
 ul.append('<li role="presentation" class="dropup-menu-item">Napisy dla niesłyszących');
 } else if (i == 1) {
 ul.append('<li role="presentation" class="dropup-menu-item">Napisy');
 }
 }

 ul.find("a").click(function () {
 subtitleCombo.find('li').removeClass('active');
 $(this).parent().addClass('active');
 if (settings.vttTracks != null && allowVttSubtitles) {
 OnChangeVttTrack();
 } else {
 OnSubtitleTrackChange(subtitleCombo);
 }

 });
 }

 this.FillAudioTracks = function (audioTracks) {
 var audioCombo = $(this.container).find('.audioTracks');
 var ul = audioCombo.find('ul');
 ul.find(".dropup-menu-item").remove();

 ul.append('<li role="presentation" class="active dropup-menu-item">Oryginalna');

 if (audioTracks > 0) {
 audioCombo.show();
 ul.append('<li role="presentation" class="dropup-menu-item">Audiodeskrypcja');

 ul.find("a").click(function () {
 audioCombo.find('li').removeClass('active');
 $(this).parent().addClass('active');
 OnAudioTrackChange(audioCombo);
 });

 }
 else
 audioCombo.hide();

 }

 this.setQualityTracks = function (profiles) {

 var qualityCombo = $(_this_.container).find('.qualityTracks');
 if (qualityCombo.length > 0) {
 qualityCombo.show();
 if(isVideo)
 this.FillVideoQualities(qualityCombo, _this_.availableProfiles, maxQualityLevel, _this_.currentQualityLevel);
 else
 this.FillAudioQualities(qualityCombo, _this_.availableProfiles, maxQualityLevel, currentAudioQualityLevel);

 }
 }

 this.OnSetNewMetadata = function (id, metadata, updatedProfiles, vttSubtitles) {

 function UpdateVttTrack(id, md) {
 var first = true;
 var result = [];
 if (md.Subtitles) {
 $.each(md.Subtitles, function (key, value) {
 var sub = { label: value, srclang: "pl", src: "" };
 sub.src = UrlUtil.BuildUrl(id + '_' + value, UrlType.Subtitle);
 if (first) {
 sub.kind = "subtitles";
 } else {
 sub.kind = "captions";
 }
 result.push(sub);
 first = false;
 });
 }
 return result;
 }

 vttSubtitles = UpdateVttTrack(id, metadata);

 updatedProfiles = UrlUtil.UpdateProfilesList(metadata);

 this.availableProfiles = updatedProfiles;
 this.availableVttSubtitles = vttSubtitles;

 if (isVideo) {
 mediaSources = createVideoSource(id, _this_.currentQualityLevel, _this_.availableProfiles, _this_.availableVttSubtitles);
 }
 else {
 mediaSources = createAudioSource(id, 1, _this_.availableProfiles);
 }

 allowVttSubtitles = CheckIfAnyVttTracksAvailable() && mediaSources.allowVttSubtitles;

 if (!allowVttSubtitles)
 settings.vttTracks = null;
 else if (mediaSources.vttTracks) {
 if (!settings.vttTracks)
 settings.vttTracks = mediaSources.vttTracks;
 else if (!settings.vttTracks.precedence) //PG 20140221
 settings.vttTracks = mediaSources.vttTracks;
 }
 maxQualityLevel = mediaSources.maxQualityLevel;
 setDurtion(metadata.Duration);

 if (metadata.Duration != undefined)
 mediaSources.duration = metadata.Duration;

 if (allowVttSubtitles) {
 if (mediaSources.vttTracks) {
 settings.vttTracks = mediaSources.vttTracks;
 }
 } else {
 settings.vttTracks = null;
 }

 if (isVideo) {
 this.FillAudioTracks(metadata.AltAudio);
 this.FillSubtitlesTracks(metadata.Subtitles);
 }
 this.setQualityTracks(metadata.Profiles);

 if (updatedProfiles != null)
 PlayWithNewUrl(0);
 else
 PlayError(settings.error_absent);

 }

 this.getMediaElement = function () {

 var el = null;
 var o = $(_this_.container).find('video');
 if (o.length == 0)
 o = $(_this_.container).find('audio');

 if (o.length > 0) {
 el = o[0];
 }

 return el;
 }

 function LogToConsole(msg) {
 if (settings.Debug) {
 if (msg)
 if (console)
 if (console.log) {
 console.log(msg);
 }
 }
 }

 function isAssigned(obj) {
 if (obj)
 return true;
 return (obj != null);
 }

 function getPlayer(selector) {
 return $(selector).jPlayer()[0];
 }

 function isHtml5VideoSupported() {
 var v = document.createElement('video');
 if (v) {
 if (v.canPlayType)
 return v.canPlayType('video/webm') || v.canPlayType('video/mp4');
 }
 return false;
 }

 function CheckIfAnyVttTracksAvailable() {
 var video = _this_.getMediaElement();
 if (video) {
 if(video.textTracks === undefined)
 return false;
 return true;
 }
 return false;
 }

 function createVideoElements(id, fullscreenMode) {
 var playerHTML = ''
 + '<div class="jp-type-single"><div id="{0}_jplayer" name="jplayer" class="jp-jplayer"></div><div class="jp-video-play"><div role="button" class="jp-video-play-icon" tabindex="1">play</div></div><div class="jp-gui"><div class="jp-interface"><ul class="jp-controls"><div role="button" class="jp-play" title="Odtwórz" tabindex="1">Odtwórz</div><div role="button" class="jp-pause" title="Pauza" tabindex="1">Pauza</div><div role="button" class="jp-stop" title="Stop" tabindex="1">Stop</div><div class="jp-settings"><div role="button" class="jp-full-screen jp-settings-btn" tabindex="1" title="pełny ekran">Pełny ekran</div><div role="button" class="jp-restore-screen jp-settings-btn" tabindex="1" title="wyłącz pełny ekran">Zakończ tryb pełnoekranowy</div><div class="dropdown" style="position:relative"><div role="button" class="jp-quality-select jp-settings-btn" title="ustawienia" data-toggle="dropup" role="button">Ustawienia </div><ul class="dropdown-menu"><div class="menu-header">Ustawienia</div><li class="qualityTracks">Jakość<ul class="sub-menu" aria-labelledby="qLabel"><li class="audioTracks">Ścieżki audio<ul class="sub-menu" aria-labelledby="aLabel"><li class="subtitleTracks">Napisy<ul class="sub-menu" aria-labelledby="sLabel"><li class="transcription"><a>Transkrypcja</div><div class="jp-volume-bar"><div class="jp-volume-bar-value"></div></div><div role="button" class="jp-mute jp-settings-btn" tabindex="1" title="Wycisz">Wycisz</div><div role="button" class="jp-unmute jp-settings-btn" tabindex="1" title="Dźwięk">Dźwięk</div></div><div class="jp-progressbar"><div class="jp-progress"><div class="jp-seek-bar"><div class="jp-play-bar"></div></div></div><div class="jp-current-time"></div><div class="jp-duration"></div></div></div></div><div class="jp-no-solution">Problem z odtwarzaniemW bieżącej przeglądarce nie ma możliwości odtwarzania materiału video.</div></div>';

 $(id).html(playerHTML.format(id.substring(1)));
 $(id).addClass('jp-video');
 if (fullscreenMode)
 $(id).addClass('jp-video-full');
 else
 $(id).addClass('jp-video-100');
 }

 function createAudioElements(id) {
 var playerHtml = '<div class="jp-type-single"><div id="{0}_jplayer" name="jplayer" class="jp-jplayer"></div><div class="jp-gui"><div class="jp-interface"><ul class="jp-controls"><div role="button" class="jp-play" title="Odtwórz" tabindex="1">Odtwórz</div><div role="button" class="jp-pause" title="Pauza" tabindex="1">Pauza</div><div role="button" class="jp-stop" title="Stop" tabindex="1">Stop</div><div class="jp-settings"><div class="dropdown" style="position:relative"><div role="button" class="jp-quality-select jp-settings-btn" title="ustawienia" data-toggle="dropup" role="button">Ustawienia </div><ul class="dropdown-menu"><div class="menu-header">Ustawienia</div><li class="qualityTracks">Jakość<ul class="sub-menu" aria-labelledby="qLabel"></div><div class="jp-volume-bar"><div class="jp-volume-bar-value"></div></div><div role="button" class="jp-mute jp-settings-btn" tabindex="1" title="Wycisz">Wycisz</div><div role="button" class="jp-unmute jp-settings-btn" tabindex="1" title="Dźwięk">Dźwięk</div></div><div class="jp-progressbar"><div class="jp-progress"><div class="jp-seek-bar"><div class="jp-play-bar"></div></div></div><div class="jp-current-time"></div><div class="jp-duration"></div></div></div></div><div class="jp-no-solution">Problem z odtwarzaniemW bieżącej przeglądarce nie ma możliwości odtwarzania materiału video.</div></div>';
 $(id).html(playerHtml.format(id.substring(1)));
 $(id).addClass('jp-audio');
 }

 function FormatNumberLength(num, length) {
 var r = "" + num;
 while (r.length < length) {
 r = "0" + r;
 }
 return r;
 }

 function setDurtion(dur)
 {
 var durTxt = '00:00';
 if (dur != undefined && dur > 0)
 {
 dur = Math.floor(dur / 1000);
 var min = Math.floor(dur / 60);
 var sec = dur % 60;
 durTxt = FormatNumberLength(min, 2) + ":" + FormatNumberLength(sec, 2);
 }

 $(_this_.container).find('.jp-duration').html(durTxt);
 currentDuration = dur;
 }

 function OnAudioTrackChange(audioCombo) {
 currentTrack = audioCombo.find("li.active a").data('val');
 PlayWithNewUrl();
 }

 function OnQualityTrackChange(qualityCombo) {
 this.currentQualityLevel = qualityCombo.find("li.active a").data('level');
 PlayWithNewUrl();
 }

 function OnAudioQualityTrackChange(qualityCombo) {
 currentAudioQualityLevel = qualityCombo.find("li.active a").data('level');
 PlayWithNewUrl();
 }

 function OnSubtitleTrackChange(subtitleCombo) {
 currentSubtitle = subtitleCombo.find("li.active a").data('val');
 PlayWithNewUrl();
 }

 function OnChangeVttTrack() {
 var subtitleCombo = $(container).find('.subtitleTracks');

 currentSubtitle = subtitleCombo.find("li.active a").data('val');

 var video = _this_.getMediaElement();
 var allTracks = video.textTracks;
 if (allTracks) {
 for (var i = 0; i < allTracks.length; i++) {
 if (currentSubtitle === allTracks[i].label)
 allTracks[i].mode = allTracks[i].SHOWING || 'showing';
 else if (currentSubtitle === '')
 allTracks[i].mode = allTracks[i].OFF || 'disabled';
 else
 if (i == currentSubtitle) {
 allTracks[i].mode = allTracks[i].SHOWING || 'showing';
 } else {
 allTracks[i].mode = allTracks[i].OFF || 'disabled';
 }
 }
 }
 }

 function PlayWithNewUrl(play_pos)
 {
 var media_el = _this_.getMediaElement();

 var id = _this_.MaterialId;

 var isPlaying = media_el.currentTime > 0.0 && !media_el.paused;
 var mediaSources;

 if (isVideo) {

 mediaSources = createVideoSource(id,
 this.currentQualityLevel,
 this.availableProfiles,
 this.availableVttSubtitles,
 currentTrack,
 allowVttSubtitles ? false : currentSubtitle);
 }
 else
 {
 mediaSources = createAudioSource(id, currentAudioQualityLevel, _this_.availableProfiles);
 }

 if (mediaSources.maxQualityLevel == 0)
 {
 PlayError(settings.error_distribution);
 return;
 }

 if (play_pos === undefined)
 lastTime = media_el.currentTime;
 else
 lastTime = play_pos;

 if(isVideo)
 {
 var timestamp = new Date().getTime();
 var urlmp4 = mediaSources['mp4'].url + '#' + timestamp;

 this.currentMedia = {
 m4v: urlmp4,
 webmv: mediaSources['webm'].url,
 poster: settings.poster,
 track: settings.vttTracks
 };
 this.Player.jPlayer("setMedia", _this_.currentMedia);
 }
 else
 {
 this.currentMedia = {
 m4a: mediaSources['mp4'].url,
 oga: mediaSources['ogg'].url
 };
 this.Player.jPlayer("setMedia", _this_.currentMedia);
 }

 if (allowVttSubtitles) {
 OnChangeVttTrack();
 }

 if (isPlaying) {
 this.Player.jPlayer("play");
 if (lastTime > 0) {
 this.Player.jPlayer("play", lastTime);
 }
 else {
 this.Player.jPlayer("play");
 }
 }
 else
 {
 if (media_el.paused && media_el.currentTime > 0)
 this.Player.jPlayer("playHead", (lastTime * 100) / currentDuration);
 }
 }

 function PlayError(errorImg)
 {

 if (isVideo) {
 this.Player.jPlayer("setMedia",
 {
 m4v: "",
 webmv: "",
 poster: errorImg
 });

 this.Player.jPlayer("option", "errorState", true)

 $(container).find(".jp-video-play").hide();
 $(container).find(".jp-gui").hide();
 }
 }

 function createAudioSource(id, level, profiles) {
 return UrlUtil.BuildMediaSource(MediaType.Audio, String(id), level, profiles);
 }

 function createVideoSource(id, level, profiles, vttSubtitles, track, subtitle) {
 return UrlUtil.BuildMediaSource(MediaType.Video, String(id), level, profiles, vttSubtitles, track, subtitle);
 }

 function getMetadataInfo(id, isVideo) {

 var metadata = new Metadata(id, isVideo);

 if (settings.subtitles)
 metadata.Subtitles = settings.subtitles;
 if (settings.altAudio > 0)
 metadata.AltAudio = 1;

 var updatedProfiles;
 var vttSubtitles;

 var path = UrlUtil.BuildUrl(id, UrlType.Metadata);
 if (settings.loadMetadada == "dynamic") {
 $.ajax({
 type: 'GET',

 url: path,
 xhrFields: {
 withCredentials: false
 },
 headers: {
 },
 success: function (data) {
 data.Profiles - [];

 $.extend(metadata, data);

 this.OnSetNewMetadata(id, metadata, updatedProfiles, vttSubtitles);

 },
 error: function (jqXHR, textStatus, error) {
 if (jqXHR.status === 0) {
 LogToConsole('Cannot connect. Verify network.');
 } else if (jqXHR.status == 403) {
 metadata.AllowDistribution = false;
 LogToConsole('Access denied [403]');
 } else if (jqXHR.status == 404) {
 LogToConsole('Requested page not found [404]');
 } else if (jqXHR.status == 500) {
 LogToConsole('Internal Server Error [500].');
 }
 if (textStatus === 'parsererror') {
 LogToConsole('Parsing JSON failed.');
 } else if (textStatus === 'timeout') {
 LogToConsole('Time out.');
 } else if (textStatus === 'abort') {
 LogToConsole('Ajax request aborted.');
 } else {
 LogToConsole('Uncaught Error: ' + jqXHR.responseText);
 }
 this.OnSetNewMetadata(id, metadata, null, null);
 }
 });
 }
 else {
 this.OnSetNewMetadata(id, metadata, updatedProfiles, vttSubtitles);
 }
 }

 var div = container + ' [name="jplayer"]';
 settings = $.extend({}, defaultVideoSettings, settings);
 settings.ancestor = container;

 if (settings.generatehtml) {
 if (isVideo)
 createVideoElements(container, settings.fullscreen);
 else
 createAudioElements(container);
 }

 var width = $(container).width();

 if (isVideo) {
 this.aspectRatio = settings.aspectRatio;

 var playerCssClass = 'jp-video-100';
 var playerWidth = "100%";
 var playerHeight = width / this.aspectRatio;
 $(container).find('.jp-video-play').css({ 'margin-top': '-' + playerHeight + 'px', 'height': playerHeight + 'px' });
 $(container).get(0).aspectRatio = this.aspectRatio;

 if (settings.fullscreen) {
 playerCssClass = 'jp-video-full';
 var playerWidth = "100%";
 var playerHeight = "100%";
 }
 }

 if (isVideo == false)
 settings.autoHideNavigation = false;

 var options =
 {
 canPlayCallback: settings.canPlayCallback,
 container: container,
 preload: 'none',
 cssSelectorAncestor: settings.ancestor,
 fullScreen: settings.fullscreen,
 //fullWindow: settings.fullscreen,
 solution: "html",
 autohide: { restored: settings.autoHideNavigation, hold: 3000 },
 keyEnabled: true,
 simpleAudioMode: settings.simpleAudioMode,
 keyBindings:
 {
 controls:
 {
 key: EventKeys.Control,
 fn: function (f) {
 f.htmlElement.video.controls = false;
 }
 },
 play:
 {
 key: EventKeys.Space,
 fn: function(f) {
 if (f.status.paused) {
 f.play();
 } else {
 f.pause();
 }
 }
 },
 pause:
 {
 key: EventKeys.Pause,
 fn: function(f) {
 if (f.status.paused) {
 f.play();
 } else {
 f.pause();
 }
 }
 },
 fullScreen:
 {
 key: EventKeys.Enter,
 fn: function(f) {
 if (f.status.video || f.options.audioFullScreen) {
 f._setOption("fullScreen", !f.options.fullScreen);
 }
 }
 },
 restoreScreen:
 {
 key: EventKeys.Escape,
 fn: function(f) {
 if (f.options.fullScreen)
 f._setOption("fullScreen", false);
 }
 },
 muted:
 {
 key: EventKeys.Backspace,
 fn: function(f) {
 f._muted(!f.options.muted);
 }
 },
 volumeUp:
 {
 key: EventKeys.Up,
 fn: function(f) {
 f.volume(f.options.volume + 0.1);
 }
 },
 volumeDown:
 {
 key: EventKeys.Down,
 fn: function(f) {
 f.volume(f.options.volume - 0.1);
 }
 }
 },
 noFullWindow:
 {
 android_pad: '',
 android_phone: '',
 blackberry: /blackberry/,
 webos: /webos/
 },
 ended: function (event) {
 console.log('ended');

 $(container).find(".jp-video-play").show();

 if (_this_.currentMedia) {
 this.Player.jPlayer("setMedia", _this_.currentMedia);
 }
 },
 play: function () {
 //console.log('play');
 $(container).find(".jp-video-play").hide();

 $(this).attr("playing", "");

 if (allowVttSubtitles) {
 OnChangeVttTrack();
 }
 },
 pause: function()
 {
 //console.log('pause');
 },
 loadeddata: function () {
 //console.log('loadeddata');
 },
 canplay: function () {
 var video = _this_.getMediaElement();

 //console.log('canplay');
 },
 canplaythrough: function () {
 //console.log('canplaythrough');
 },
 playing: function () {
 //console.log('playing');
 },
 waiting: function () {
 //console.log('waiting');
 },
 seeking: function () {
 //console.log('seeking');
 },
 seeked: function () {
 //console.log('seeked');
 },
 abort: function () {
 //console.log('abort');
 },
 progress: function () {
 //var v = _this_.getMediaElement();
 //if(v.buffered.length > 0)
 // console.log('progress ' + v.buffered.end(0));
 },
 resize: function(event) {
 if (event.jPlayer.status.height == "100%") {
 $('body').addClass('hide-scrollbars');
 } else {
 $('body').removeClass('hide-scrollbars');
 };
 },
 error: function (event) {
 var video = _this_.getMediaElement();
 console.log('error: ' + event.jPlayer.error.type + ' networkState:' + video.networkState);
 switch (event.jPlayer.error.type) {
 case $.jPlayer.error.URL:
 if (video.networkState == 3) {
 if (_this_.currentMedia != null) {
 var newMedia = event.jPlayer.status.media;
 newMedia.poster = settings.error_distribution;
 $(this).jPlayer("setMedia", newMedia);
 }
 else
 $(container).find(".jp-video-play").hide();
 }
 else {
 if (settings.loadMetadada == "dynamic") {
 if (_this_.currentQualityLevel == 360) {
 this.SetVideoQuality(270);
 PlayWithNewUrl();
 setTimeout(_this_.Player.jPlayer("play"), 100);
 }
 if (_this_.currentQualityLevel == 720) {
 this.SetVideoQuality(360);
 PlayWithNewUrl();
 setTimeout(_this_.Player.jPlayer("play"), 100);
 }
 }
 }
 break;
 case $.jPlayer.error.URL_NOT_SET:
 LogToConsole("Nie podano materiału do odtworzenia!");
 break;
 case $.jPlayer.error.NO_SOLUTION:
 LogToConsole("Odtwarzanie materiałów jest niemożliwe: " + event.jPlayer.html);
 break;
 case $.jPlayer.error.NO_SUPPORT:
 LogToConsole("Odtworzenie podanego materiału nie jest możliwe: " + event.jPlayer.status.src);
 break;
 }
 },
 ready: function (event) {
 if (isVideo) {
 $(container).find(".jp-interface").addClass("jp-interface-autohide");

 if (settings.fullscreen)
 this.Player.jPlayer("option", "fullScreen", true);
 }

 $(container).find(".jp-stop").click(function () {
 $(container).find(".jp-video-play").show();

 if (_this_.currentMedia) {
 this.Player.jPlayer("setMedia", _this_.currentMedia);
 }
 });
 this.getMediaElement().controls = false;
 },
 supplied: isVideo ? "m4v, webmv" : "m4a, oga",
 size:
 {
 width: playerWidth,
 height: playerHeight,
 cssClass: playerCssClass
 },
 timeupdate : function(event)
 {
 currentTime = event.jPlayer.status.currentTime;
 }
 }

 this.Player = $(div).jPlayer(options);

 $(div).find('video').attr('crossorigin', 'anonymous');

 if (!settings.showTranscrptionCallback) {
 $(container).find(".transcription").hide();

 }
 else {
 $(container).find(".transcription a").click(function () {
 settings.showTranscrptionCallback(settings.transcrptionId);
 });
 }

 getMetadataInfo(id, isVideo);

}

function createSimpleAudioPlayer(parent, id, canPlay, playelem) {
 var settings = {};
 settings.generatehtml = false;
 settings.loadMetadada = 'static';
 settings.simpleAudioMode = true;
 settings.canPlayCallback = canPlay;

 var html = '<div name="jplayer"></div>';
 $(parent).append(
 html
);

 var player = new createMediaPlayer(parent, id, settings, false);

 var playelement = "#";
 if (playelem) {
 playelement +=playelem;
 } else {
 playelement =parent;
 }
 var media = player.getMediaElement();

 media.onplay = function () {
 $(playelement).attr("playing", "");
 };
 media.onpause = function () {
 $(playelement).removeAttr("playing");
 };

 $(playelement).click(function () {
 if (media != null) {
 if (media.paused) {
 player.Player.jPlayer("play");
 }
 else {
 player.Player.jPlayer("pause");
 }
 }
 });

 player.Player.bind($.jPlayer.event.ended, function(event){
 $(playelement).removeAttr("playing");
 });

 $(playelement).css('cursor', 'pointer');

 return player;
}

function updatePlayerSize()
{
 $('.jp-video').each(function (i, playerContainer) {
 var _playerContainer = $(playerContainer);
 var div = _playerContainer.get(0);
 var w = _playerContainer.innerWidth();
 var aspectRatio = div.aspectRatio;

 if (!_playerContainer.hasClass('jp-video-full')) {
 var playerHeight = _playerContainer.find('.jp-jplayer').height(w / aspectRatio).width(w).find('img').height(w / aspectRatio).width(w).height();
 _playerContainer.find('.jp-video-play').css({ 'margin-top': '-' + playerHeight + 'px', 'height': playerHeight + 'px' });
 }
 });
}

function createPlayer(div, canPlay, loadMetadada)
{
 if (loadMetadada === undefined) {
 loadMetadada = 'static';
 }

 var _div = $(div);
 var id = _div.attr('id');
 var mediatype = _div.data("mediatype");
 var materialId = _div.data('mid').toString();
 var aspectratio = _div.data('aspectratio');
 var subtitles = _div.data('subtitles');
 var altaudio = _div.data('altaudio');
 var playelem = _div.data('playelem');
 var poster = _div.data('poster');

 if (subtitles !== undefined && subtitles.length > 0)
 {
 subtitles = subtitles.split(",");
 }

 var container = "#" + id;

 if (mediatype == "video" && materialId)
 {
 if (aspectratio === undefined) {
 aspectratio = 1.78;
 }

 if (subtitles === undefined || subtitles.length == 0) {
 subtitles = [];
 }
 if (altaudio === undefined) {
 altaudio = 0;
 }
 var settings = { generatehtml: true, autoplay: false, canPlayCallback: canPlay, aspectRatio: aspectratio, autoHideNavigation: true, loadMetadada: loadMetadada, altAudio: altaudio, subtitles: subtitles, poster: poster };
 var player = new createMediaPlayer(container, materialId, settings, true);

 return player;
 }

 if (mediatype == "audio" && materialId) {

 var settings = { generatehtml: true, autoplay: false, canPlayCallback: canPlay, loadMetadada: loadMetadada };
 return new createMediaPlayer(container, materialId, settings, false);
 }

 if (mediatype == "simple-audio" && materialId) {
 return createSimpleAudioPlayer(container, materialId, canPlay, playelem);
 }

 return null;
}

 return {
 createSimpleAudioPlayer: createSimpleAudioPlayer,
 createVideoPlayer: function (container, id, settings) {
 return new createMediaPlayer(container, id, settings, true);
 },
 createAudioPlayer: function (container, id, settings) {
 return new createMediaPlayer(container, id, settings, false);
 },

 updatePlayerSize: updatePlayerSize,
 createPlayer: createPlayer,
 playMedia: function (container) {
 var div = container + ' [name="jplayer"]';
 $(div).jPlayer("play");
 },
 buildMediaSource: function (mediaType, id) {
 return UrlUtil.BuildMediaSource(mediaType, String(id));
 },
 newBuildUrlFunc: function(func){
 UrlUtil.urlType = UrlType;
 UrlUtil.BuildUrl = func;
 }
 }
});

570ca41f90093e493467215a8c6e3183045aa67a.js
/*!
 * Bowser - a browser detector
 * https://github.com/ded/bowser
 * MIT License | (c) Dustin Diaz 2013
 */

!function (name, definition) {
 if (typeof module != 'undefined' && module.exports) module.exports['browser'] = definition()
 else if (typeof define == 'function') define(definition)
 else this[name] = definition()
}('bowser', function () {
 /**
 * navigator.userAgent =>
 * Chrome: "Mozilla/5.0 (Macintosh; Intel Mac OS X 10_6_7) AppleWebKit/534.24 (KHTML, like Gecko) Chrome/11.0.696.57 Safari/534.24"
 * Opera: "Opera/9.80 (Macintosh; Intel Mac OS X 10.6.7; U; en) Presto/2.7.62 Version/11.01"
 * Safari: "Mozilla/5.0 (Macintosh; U; Intel Mac OS X 10_6_7; en-us) AppleWebKit/533.21.1 (KHTML, like Gecko) Version/5.0.5 Safari/533.21.1"
 * IE: "Mozilla/4.0 (compatible; MSIE 8.0; Windows NT 6.1; Trident/5.0; SLCC2; .NET CLR 2.0.50727; .NET CLR 3.5.30729; .NET CLR 3.0.30729; Media Center PC 6.0; .NET4.0C)"
 * IE>=11: "Mozilla/5.0 (Windows NT 6.3; WOW64; Trident/7.0; .NET4.0E; .NET4.0C; Media Center PC 6.0; rv:11.0) like Gecko"
 * Firefox: "Mozilla/5.0 (Macintosh; Intel Mac OS X 10.6; rv:2.0) Gecko/20100101 Firefox/4.0"
 * iPhone: "Mozilla/5.0 (iPhone Simulator; U; CPU iPhone OS 4_3_2 like Mac OS X; en-us) AppleWebKit/533.17.9 (KHTML, like Gecko) Version/5.0.2 Mobile/8H7 Safari/6533.18.5"
 * iPad: "Mozilla/5.0 (iPad; U; CPU OS 4_3_2 like Mac OS X; en-us) AppleWebKit/533.17.9 (KHTML, like Gecko) Version/5.0.2 Mobile/8H7 Safari/6533.18.5",
 * Android: "Mozilla/5.0 (Linux; U; Android 2.3.4; en-us; T-Mobile G2 Build/GRJ22) AppleWebKit/533.1 (KHTML, like Gecko) Version/4.0 Mobile Safari/533.1"
 * Touchpad: "Mozilla/5.0 (hp-tabled;Linux;hpwOS/3.0.5; U; en-US)) AppleWebKit/534.6 (KHTML, like Gecko) wOSBrowser/234.83 Safari/534.6 TouchPad/1.0"
 * PhantomJS: "Mozilla/5.0 (Macintosh; Intel Mac OS X) AppleWebKit/534.34 (KHTML, like Gecko) PhantomJS/1.5.0 Safari/534.34"
 * Amazon Silk: "Mozilla/5.0 (Macintosh; U; Intel Mac OS X 10_6_3; en-us; Silk/1.0.22.153_10033210) AppleWebKit/533.16 (KHTML, like Gecko) Version/5.0 Safari/533.16 Silk-Accelerated=true"
 */

 var ua = navigator.userAgent
 , t = true
 , ie = /(msie|trident)/i.test(ua)
 , chrome = /chrome|crios/i.test(ua)
 , phantom = /phantom/i.test(ua)
 , iphone = /iphone/i.test(ua)
 , ipad = /ipad/i.test(ua)
 , touchpad = /touchpad/i.test(ua)
 , silk = /silk/i.test(ua)
 , safari = /safari/i.test(ua) && !chrome && !phantom && !silk
 , android = /android/i.test(ua)
 , opera = /opera/i.test(ua) || /opr/i.test(ua)
 , firefox = /firefox/i.test(ua)
 , gecko = /gecko\//i.test(ua)
 , seamonkey = /seamonkey\//i.test(ua)
 , webkitVersion = /version\/(\d+(\.\d+)?)/i
 , firefoxVersion = /firefox\/(\d+(\.\d+)?)/i
 , o

 function detect() {

 if (ie) return {
 name: 'Internet Explorer'
 , msie: t
 , version: ua.match(/(msie |rv:)(\d+(\.\d+)?)/i)[2]
 }
 if (opera) return {
 name: 'Opera'
 , opera: t
 , version: ua.match(webkitVersion) ? ua.match(webkitVersion)[1] : ua.match(/opr\/(\d+(\.\d+)?)/i)[1]
 }
 if (chrome) return {
 name: 'Chrome'
 , webkit: t
 , chrome: t
 , version: ua.match(/(?:chrome|crios)\/(\d+(\.\d+)?)/i)[1]
 }
 if (phantom) return {
 name: 'PhantomJS'
 , webkit: t
 , phantom: t
 , version: ua.match(/phantomjs\/(\d+(\.\d+)+)/i)[1]
 }
 if (touchpad) return {
 name: 'TouchPad'
 , webkit: t
 , touchpad: t
 , version : ua.match(/touchpad\/(\d+(\.\d+)?)/i)[1]
 }

 if (silk) return {
 name: 'Amazon Silk'
 , webkit: t
 , android: t
 , mobile: t
 , version : ua.match(/silk\/(\d+(\.\d+)?)/i)[1]
 }
 if (iphone || ipad) {
 o = {
 name : iphone ? 'iPhone' : 'iPad'
 , webkit: t
 , mobile: t
 , ios: t
 , iphone: iphone
 , ipad: ipad
 }
 // WTF: version is not part of user agent in web apps
 if (webkitVersion.test(ua)) {
 o.version = ua.match(webkitVersion)[1]
 }
 return o
 }
 if (android) return {
 name: 'Android'
 , webkit: t
 , android: t
 , mobile: t
 , version: (ua.match(webkitVersion) || ua.match(firefoxVersion))[1]
 }
 if (safari) return {
 name: 'Safari'
 , webkit: t
 , safari: t
 , version: ua.match(webkitVersion)[1]
 }
 if (gecko) {
 o = {
 name: 'Gecko'
 , gecko: t
 , mozilla: t
 , version: ua.match(firefoxVersion)[1]
 }
 if (firefox) {
 o.name = 'Firefox';
 o.firefox = t;
 }
 return o
 }
 if (seamonkey) return {
 name: 'SeaMonkey'
 , seamonkey: t
 , version: ua.match(/seamonkey\/(\d+(\.\d+)?)/i)[1]
 }
 return {}
 }

 var bowser = detect()

 // Graded Browser Support
 // http://developer.yahoo.com/yui/articles/gbs
 if ((bowser.msie && bowser.version >= 8) ||
 (bowser.chrome && bowser.version >= 10) ||
 (bowser.firefox && bowser.version >= 4.0) ||
 (bowser.safari && bowser.version >= 5) ||
 (bowser.opera && bowser.version >= 10.0)) {
 bowser.a = t;
 }

 else if ((bowser.msie && bowser.version < 8) ||
 (bowser.chrome && bowser.version < 10) ||
 (bowser.firefox && bowser.version < 4.0) ||
 (bowser.safari && bowser.version < 5) ||
 (bowser.opera && bowser.version < 10.0)) {
 bowser.c = t
 } else bowser.x = t

 return bowser
});

f400c3f6bdd6473a6069ae946ab6600cbd24c775.js
define([
], function () {

 var tools = {
 bookpartIDGenerator: function(collection_id, collection_version, variant, module_id){
 return (collection_id + ':' + collection_version + ':' + variant + ':' + module_id);
 },
 handbookIDGenerator: function(collection_id, collection_version, variant){
 return (collection_id + ':' + collection_version + ':' + variant);
 },
 buildUrl: function(url, args){
 for(var a in args){
 url = url.replace('{' + a + '}', args[a]);
 }
 return url;
 }
 };

 var ReaderInfoProvider = function(){};

 ReaderInfoProvider.prototype.thisPageIdentifiers = function() {
 var base = $('base');
 var o = {};
 o.moduleId = base.attr('data-module-id');
 o.collectionId = base.data('collection-id');
 o.collectionVariant = base.data('collection-variant');
 o.moduleVersion = base.data('module-version');
 o.collectionVersion = base.data('collection-version');
 return o;
 };

 ReaderInfoProvider.prototype.getTools = function() {
 return tools;
 };

 tools.ReaderInfoProvider = ReaderInfoProvider;

 return tools;
});

0e8d2a6bbd624d08aab3b72e7ba96f6647497613.js
define(['jquery'], function ($) {
return {
 plusWH: 3,
 iframeResizeCallback: function (width, height, iframe) {
 console.log('iframe callback called', width, height, iframe);
 },
 contentsAdjust: function (iframe) {
 iframe.contents().find('body').css({
 margin: 0,
 padding: 0,
 overflow: 'hidden'
 });
 },
 postIframeLoad: function(iframe){

 },
 addMessageEvent: false,
 createIframe: function (container, dimensions, onloadCallback, preLoadCallback) {

 var iframe = $('<iframe frameborder="0">').css({
 margin: 0,
 padding: 0,
 border: 'none',
 width: dimensions.width + this.plusWH,
 height: dimensions.height + this.plusWH,
 overflow: 'hidden'
 });

 var _this = this;
 if (this.addMessageEvent) {
 $(window).on('message', function (e) {
 if (iframe[0].contentWindow == e.originalEvent.source && e.originalEvent.data.msg == 'edgeResize') {
 _this.iframeResizeCallback(e.originalEvent.data.width, e.originalEvent.data.height, iframe);
 }
 });
 }
 if (preLoadCallback) {
 preLoadCallback(iframe);
 }
 iframe.addClass('proper-element').attr('allow', 'camera');

 iframe.load(function () {
 _this.contentsAdjust(iframe);
 onloadCallback(iframe);
 iframe.css('transform', 'scale(' + (dimensions.scale) + ')');
 iframe.css('transform-origin', '0 0');
 iframe.css({
 position: 'absolute',
 top: 0,
 left: 0
 });
 _this.postIframeLoad(iframe);
 });
 var scalingDiv = $('<div>');
 scalingDiv.width(dimensions.desiredWidth).height(dimensions.desiredHeight);
 scalingDiv.css('margin', '0 auto');
 scalingDiv.css('overflow', 'hidden');
 $(container).append(scalingDiv);
 scalingDiv.append(iframe);
 scalingDiv.css({
 position: 'relative'
 });
 }
 };
});

546f9dbb54a42799e8ba4c0d997d909c0f5ea65c.js
define(['require', 'jquery', 'bowser', 'backbone', 'underscore', './ScalingDivMixin', './PureHTMLEngine'], function (require, $, bowser, Backbone, _, ScalingDivMixin, PureHTMLEngine) {

 var AdobeEdgeEngine = Backbone.View.extend({});

 _.extend(AdobeEdgeEngine.prototype, PureHTMLEngine.prototype, ScalingDivMixin, {
 plusWH: 0,
 _4k: 4000,
 addMessageEvent: true,
 initialize: function (options) {
 PureHTMLEngine.prototype.initialize.call(this, options);
 var ver = this._opts.engineVersion;
 if(ver == '5.0.1' || ver == '5.0.0'){
 _.extend(this, PureHTMLEngine.prototype);
 this._connectApiListener = function(){};
 }
 },
 contentsAdjust: function () {
 },
 iframeResizeCallback: function (width, height, iframe) {
 this.savedHeight = height;
 this.savedWidth = width;
 var dimensions = this._calcDimensions();
 iframe.width(width).height(height);
 iframe.css('transform', 'scale(' + (dimensions.scale) + ')');
 iframe.css('transform-origin', '0 0');
 var _this = this;
 this.debounceBody = function (width, height) {
 var d = _this._calcDimensions();
 iframe.parent().css({
 width: d.desiredWidth,
 height: d.desiredHeight
 });
 iframe.css('transform', 'scale(' + (d.scale) + ')');
 iframe.css('transform-origin', '0 0');
 };
 },
 _calcDimensions: function () {
 var hRatio = this._opts.heightRatio;
 var dimensions = {
 width: $(this.destination).width(),
 height: $(this.destination).width() * hRatio
 };

 var maxHeight = this.maxPercentageHeight * $(window).height();
 if (this.fsMode) {
 maxHeight = $(window).height();
 }

 if (dimensions.height > maxHeight) {
 var scale = maxHeight / dimensions.height;
 dimensions.width *= scale;
 dimensions.height *= scale;
 }
 dimensions.desiredWidth = dimensions.width;
 dimensions.desiredHeight = dimensions.height;
 dimensions.width = this.savedWidth || dimensions.desiredWidth;
 dimensions.height = this.savedHeight || dimensions.desiredHeight;
 dimensions.scale = Math.min(dimensions.desiredWidth / dimensions.width, dimensions.desiredHeight / dimensions.height);
 return dimensions;
 }
 });
 return AdobeEdgeEngine;
});

