
Algorytmy iteracyjne

Wprowadzenie
Przeczytaj
Animacja
Sprawdź się
Dla nauczyciela

W tym e‐materiale powtarzamy wiadomości ze szkoły podstawowej.

Iteracja polega na wielokrotnym wykonywaniu tych samych czynności – np. powtarzaniu
zapisanych w programie instrukcji – do momentu osiągnięcia określonego celu. Można
opisać ją słowami: „dopóki spełniony jest pewien warunek, wykonuj instrukcję” lub: „na
każdym elemencie zbioru wykonaj pewną operację”. Np. „każdemu produktowi w koszyku
nalicz 10% zniżki”, „każdemu uczniowi w klasie wyślij wiadomość”, „oblicz sumę
wszystkich liczb całkowitych z przedziału 1, 100 ”.

Mechanizm iteracji to podstawowa operacja wykorzystywana w programowaniu.
Odpowiednio użyty, pozwala skrócić kod programu i uczynić go bardziej czytelnym.

Implementacje algorytmów iteracyjnych znajdziesz w e‐materiałach:

Algorytmy iteracyjne w języku C++,
Algorytmy iteracyjne w języku Java,
Algorytmy iteracyjne w języku Python.

Więcej zadań? Sięgnij do Algorytmy iteracyjne – zadania maturalne.
Twoje cele

Źródło: Teo Duldulao, domena publiczna.

III

⟨ ⟩

Algorytmy iteracyjne

file:///b/PD50wrWEK
file:///b/PLNMxCwbr
file:///b/PHJusLbHU
file:///b/PlNFSU8TQ

Wyjaśnisz, kiedy należy zastosować mechanizm iteracji.
Rozwiążesz problemy obliczeniowe, wykorzystując mechanizm iteracji.
Przeanalizujesz schematy blokowe algorytmów iteracyjnych.

Przeczytaj

Iteracja i pętle

Mamy za zadanie obliczyć sumę liczb parzystych z przedziału a, b , gdzie a i b są
liczbami całkowitymi. Zgodnie z poleceniem w tym przedziale będziemy rozważać tylko
liczby całkowite. Jest to zadanie wymagające zastosowania iteracji, czyli wielokrotnego
wykonania tych samych czynności.

Problem 1

Przygotuj i omów algorytm, który pobierze od użytkownika dwie liczby całkowite a oraz b,
oznaczające początek i koniec przedziału a, b , a następnie obliczy sumę liczb parzystych
z zadanego zakresu.

Specyfikacja problemu:

Dane:

a, b – liczby całkowite; kolejno: lewy i prawy kraniec przedziału, a b

Wynik:

Program wypisuje sumę liczb parzystych z przedziału a, b .

Aby rozwiązać przedstawiony problem, należy dla każdej liczby z przedziału a, b
sprawdzić, czy jest ona parzysta, a jeżeli tak, dodać ją do wartości zmiennej suma
przechowującej sumę kolejnych liczb parzystych. Te czynności trzeba wykonać
wielokrotnie, w zależności od tego, ile liczb znajduje się w przedziale a, b . Algorytm
przedstawimy w postaci schematu blokowego.

W schemacie zastosujemy pętlę, czyli będziemy wielokrotnie wykonywać te same zestawy
instrukcji. W naszym przypadku pętla będzie wykonywać się, dopóki i będzie mniejsze lub
równe b.

Zmiennej i przypisujemy wartość a, czyli wartość początku sprawdzanego przedziału. Przy
każdym wykonaniu pętli do zmiennej i dodajemy liczbę 1, aż do momentu, kiedy zmienna
i będzie większa od b (czyli liczby będącej końcem przedziału).

⟨ ⟩

⟨ ⟩

⩽

⟨ ⟩

⟨ ⟩

⟨ ⟩

Oto schemat blokowy algorytmu obliczającego i wypisującego sumę liczb parzystych
z przedziału a, b .

Źródło: Contentplus.pl Sp. z o.o., licencja: CC BY-SA 3.0.

Omówmy kolejne etapy algorytmu.

Rozpoczynamy od wczytania dwóch wartości: a oraz b. Są to odpowiednio lewy i prawy
koniec przedziału.
Następnie inicjalizujemy zmienne i oraz suma. Pierwszej przypisujemy wartość a,
drugiej zero. Zmienna i jest tzw. zmienną sterującą. Wykorzystujemy ją, aby określić, ile
razy powinny być wykonane instrukcje zapisane wewnątrz pętli. Po wykonaniu całego
bloku poleceń zwiększamy wartość i o 1. W rezultacie będziemy mogli zakończyć
działanie pętli po dokładnie tylu cyklach, ile jest wymaganych do poprawnego
rozwiązania problemu.
Kolejnym etapem jest skonstruowanie warunku pętli. Instrukcje wewnątrz pętli będą
wykonywać się, dopóki zmienna i będzie mniejsza lub równa b. Jeżeli okaże się, że ten
warunek nie jest spełniony, możemy wypisać obliczoną sumę na ekranie i zakończyć
program. Gdy zmienna i jest jednak mniejsza lub równa b, trzeba ponownie wykonać
instrukcje wewnątrz pętli.
Sprawdzamy parzystość liczby, czyli obliczamy resztę z dzielenia zmiennej i przez 2.
Jeżeli reszta wynosi 0 (czyli w sytuacji, gdy liczba jest parzysta), dodajemy wartość
zmiennej i do wartości zmiennej suma. Następnie dokonujemy
inkrementacji zmiennej i.
Wracamy na początek pętli i ponownie sprawdzamy warunek. Przedstawione operacje
będą wykonywane b - a + 1 razy. W momencie, gdy zmienna i osiągnie wartość

⟨ ⟩

javascript:void(0);

 b + 1, warunek wykonania pętli nie będzie już spełniony. Na ekranie zostanie
wyświetlona suma liczb parzystych; jest to ostania czynność opisana w algorytmie.

Spróbujmy zmodyfikować schemat blokowy. Warunek decydujący o wykonaniu kolejnego
cyklu pętli lub jej zakończeniu umieścimy na końcu sekwencji poleceń:

Źródło: Contentplus.pl Sp. z o.o., licencja: CC BY-SA 3.0.

Zwróćmy uwagę, że niezależnie od wartości zmiennej sterującej i oraz budowy warunku,
operacje zapisane wewnątrz pętli zostaną wykonane co najmniej jeden raz. Wynika to ze
zmiany miejsca pojawienia się warunku pętli („czy zmienna i jest mniejsza lub równa b?”).
Wartość logiczna takiego wyrażenia jest obecnie sprawdzana dopiero po wykonaniu całego
bloku instrukcji.

Gdybyśmy wykorzystali zmodyfikowany algorytm do rozwiązania zadania przedstawionego
na wstępie, okazałby się on równie skuteczny jak poprzednia wersja. Zestaw instrukcji
zapisanych wewnątrz pętli zostałby wykonany tyle samo razy – gdy zmienna i przyjęłaby
wartość większą od b, na ekranie pojawiłaby się suma liczb parzystych, a pętla zostałaby
przerwana. Poprawność obu sposobów rozwiązania wynika z założenia, że a b, czyli że
w przedziale znajduje się co najmniej jedna liczba.

Należy jednak zaznaczyć, że w pewnych przypadkach lepiej jest zastosować algorytm
zgodny z pierwszym schematem blokowym, zaś w innych – użyć wariantu drugiego.

Zoptymalizowana wersja algorytmu

Przeanalizujmy algorytm ponownie i spróbujmy rozwiązać go innym sposobem.

⩽

Problem 2

Przygotuj i omów algorytm, który pobierze od użytkownika dwie liczby całkowite a oraz b,
oznaczające początek i koniec przedziału a, b , a następnie obliczy sumę liczb parzystych
z zadanego zakresu. Zmodyfikuj przedstawiony wcześniej algorytm tak, aby wyeliminować
konieczność każdorazowego sprawdzania parzystości liczby.

Specyfikacja problemu:

Dane:

a, b – liczby całkowite; kolejno: lewy i prawy kraniec przedziału, a b

Wynik:

Program wypisuje sumę liczb parzystych z przedziału a, b .

Zauważmy, że liczby parzyste zawsze różnią się o 2, więc możemy wyeliminować
konieczność sprawdzania podzielności – wystarczy, że iterator będzie zmieniał się o 2. Tak
zmodyfikowany algorytm prezentuje się następująco:

Źródło: Contentplus.pl Sp. z o.o., licencja: CC BY-SA 3.0.

⟨ ⟩

⩽

⟨ ⟩

Zwróćmy uwagę na konieczność upewnienia się, że początek sprawdzanego przedziału
jest liczbą parzystą – jeżeli tak nie jest, dodajemy do niego jeden. Możemy to zrobić,
ponieważ nieparzysta liczba i tak nie zostałaby dodana do sumy.

Suma liczb parzystych jako suma ciągu arytmetycznego
Problem 3

Przygotuj i omów algorytm, który pobierze od użytkownika dwie liczby całkowite a oraz b,
oznaczające początek i koniec przedziału a, b , a następnie obliczy sumę liczb parzystych
z zadanego zakresu. W swoim rozwiązaniu skorzystaj ze wzoru na sumę ciągu arytmetycznego.

Specyfikacja problemu:

Dane:

a, b – liczby całkowite; kolejno: lewy i prawy kraniec przedziału, a b

Wynik:

Program wypisuje sumę liczb parzystych z przedziału a, b .

Ponieważ kolejne liczby parzyste różnią się od siebie o 2, jeszcze skuteczniejszym
rozwiązaniem byłoby skorzystanie ze wzoru na sumę elementów ciągu arytmetycznego.
Spójrzmy na jego postać ogólną:

,

gdzie to liczba elementów, które chcemy zsumować, zaś to pierwszy oraz
ostatni element tego ciągu w zadanym przedziale.

W jaki sposób wyznaczyć ? Po raz kolejny skorzystamy z faktu, że sumujemy tylko liczby
parzyste. Możemy zmodyfikować wartość lewego i prawego krańca przedziału (czyli a i b) –
w przypadku nieparzystego a zwiększyć o 1, a w przypadku nieparzystego b zmniejszyć o 1.
Liczbę wszystkich liczb całkowitych w przedziale możemy zapisać jako b - a + 1. Jeżeli
ta wartość byłaby parzysta, liczby parzyste stanowiłyby dokładnie połowę jej elementów –
jednak zawsze będzie ona nieparzysta, gdyż jest to wynik odejmowania dwóch liczb
parzystych zwiększony o 1. Ponieważ oba krańce przedziału to liczby parzyste, liczb
parzystych w przedziale będzie więcej niż nieparzystych. Oznacza to, że liczb parzystych
w przedziale będzie .

⟨ ⟩

⩽

⟨ ⟩

S

n

=

a

1

+a

n

2

⋅ n

n a

1

, a

n

n

b−a+2

2

To wszystko daje nam następujący wzór pozwalający obliczyć sumę liczb parzystych
w zadanym przedziale:

.

Algorytm wykorzystujący ten wzór prezentuje się następująco:

Źródło: Contentplus.pl Sp. z o.o., licencja: CC BY-SA 3.0.

Wyszukiwanie minimum w zbiorze liczb

Przeanalizujmy teraz nieco trudniejszy przykład. Załóżmy, że w zbiorze liczb podanych
przez użytkownika chcemy wskazać liczbę najmniejszą.

S

b

a

=

(a+b)(b−a+2)

4

Problem 4

Przygotuj i omów algorytm, który pobierze od użytkownika n liczb i wyłoni spośród nich
najmniejszą.

Specyfikacja problemu:

Dane:

n – liczba naturalna; liczba elementów wprowadzanych przez użytkownika;

x , x , …, x – liczby całkowite podawane przez użytkownika

Wynik:

Program wypisuje najmniejszą spośród liczb podanych przez użytkownika.

Algorytm znajdowania minimum (lub maksimum) ma zastosowanie nie tylko w problemach
matematycznych, ale i w codziennym życiu – w ten sposób szukamy, np. sklepu z najniższą
ceną interesującego nas produktu.

Aby rozwiązać problem, trzeba zacząć od wskazania dowolnego elementu jako
najmniejszego. Następnie porównujemy go z kolejnym. Jeśli drugi element okaże się
mniejszy, to on zaczyna być traktowany jako minimum. Kolejnym krokiem jest porównanie
elementu aktualnie najmniejszego z trzecim elementem – i tak aż do końca badanego ciągu.

W algorytmie użyjemy zmiennych n, min oraz x. Zmienna n będzie liczbą danych,
a zmienna x będzie przechowywać kolejne wprowadzone przez użytkownika wartości.
Zmienna min posłuży do przechowywania liczby, która w danym momencie jest
najmniejsza.

n ⩾ 1

1 2 n

Słownik
dekrementacja

zmniejszanie wartości zmiennej o jeden
inkrementacja

zwiększenie wartości zmiennej o jeden
zmienna sterująca pętlą (iterator)

zmienna tworzona i wykorzystywana do sterowania wykonaniem instrukcji iteracyjnej;
zazwyczaj to zmienna typu porządkowego, np. liczba naturalna, całkowita lub wartość
logiczna, aczkolwiek w niektórych językach, np. C++ i Java, typ zmiennej sterującej nie
jest ograniczony

Animacja

Polecenie 1

Zapoznaj się z animacją, a następnie wykonaj polecenie 2.

Film dostępny pod adresem /preview/resource/ROG3dMWobOBmp

Film nawiązujący do treści materiału: Schemat blokowy algorytmu iteracyjnego.

file:///preview/resource/ROG3dMWobOBmp

Polecenie 2

Korzystając z pseudokodu bądź wybranego języka programowania, utwórz odwrócony trójkąt
składający się z symboli *. Pobierz od użytkownika wysokość h generowanego trójkąta.

Specyfikacja problemu:

Dane:

h – wysokość generowanego trójkąta; liczba naturalna

Wynik:

Algorytm generuje odwrócony trójkąt o zadanej wysokości h.

Przykład:

Rozwiązanie zadania dla h = 5.

1

 *

1

2

3

4

5

Polecenie 3

Opracuj algorytm rozwiązujący następujący problem. Użytkownik podaje trzy liczby: a, b oraz
r.

Następnie z przedziału a, b wybieramy liczby należące do ciągu arytmetycznego o różnicy
r i pierwszym wyrazie a – czyli liczby a, a + r, a + 2r itd. Obliczamy kwadraty kolejnych
wyrazów ciągu i wypisujemy ich wartości tylko wtedy, gdy są one większe od zadanego x.
Jednocześnie obliczamy sumę wypisanych elementów. Ją również wypisujemy. Algorytm zapisz
za pomocą schematu blokowego lub wybranego języka programowania.

Rozwiązując problem, pamiętaj, by najpierw wypisać kwadraty liczb, a następnie podać ich
sumę.

Specyfikacja problemu:

Dane:

a, b – kolejno: lewy i prawy kraniec przedziału, a < b; liczby całkowite

x – wartość porównywana z kwadratami kolejnych wyrazów ciągu; liczba naturalna

r – różnica ciągu; liczba całkowita

Wynik:

Algorytm wypisuje kwadraty liczb, które są większe od x, a następnie sumę tych kwadratów.

Polecenie 4

Porównaj swoje rozwiązanie z przedstawionym w prezentacji.

⟨)

W ramach opracowywania algorytmu
przygotujemy schemat blokowy. Rozpoczniemy

1

od realizacji operacji wypisywania kwadratów
liczb spełniających wyróżnione w treści zadania
warunki, a następnie uzupełnimy schemat
o proces obliczania i drukowania sumy tych
kwadratów.

Budowanie schematu zaczynamy od
narysowania bloku START. Dodamy też cztery
bloki, które wczytają kolejno wartości: a, b, x
oraz r.

Następnie zmiennej sterującej i przypisujemy
wartość a. Jest to pierwsza liczba należąca do
badanego zbioru. Jeżeli jej kwadrat będzie
większy niż x, wyświetlimy go na ekranie.

2

3

Ponieważ mamy podnosić do kwadratu liczby
mniejsze niż b, dodajemy do schematu blok
warunkowy, w którym sprawdzamy, czy
zmienna sterująca jest mniejsza od b.

Gdyby okazało się, że warunek nie został
spełniony (czyli liczba jest równa co najmniej b),
kończymy algorytm. Natomiast w sytuacji, gdy
warunek jest spełniony, obliczamy kwadrat
liczby.

4

5

Musimy sprawdzić, czy obliczona wartość
kwadratu jest większa niż x. Umieszczamy
w schemacie blok warunkowy zawierający
odpowiednie wyrażenie logiczne.

Jeżeli kwadrat liczby jest większy niż x,
wypisujemy go na ekranie. Wartość zmiennej
sterującej zwiększamy o r.

6

7

Gdy kwadrat liczby nie jest większy od x,
również zwiększamy wartość zmiennej
sterującej o r.

Wartość zmiennej i zwiększyła się o r.
Ponownie sprawdzamy warunek pętli –
upewniamy się, czy i jest mniejsze od b. Jeżeli
warunek pętli okaże się prawdziwy, wówczas
powtarzamy wszystkie operacje umieszczone
w jej wnętrzu: wyliczenie nowej wartości
zmiennej kwadrat, zbadanie, czy kwadrat

8

9

jest większy od x i ewentualne wypisanie
wartości zmiennej kwadrat.

Schemat blokowy uzupełnimy o instrukcje, za
pomocą których obliczymy wartość sumy
wypisanych liczb.

W schemacie za inicjalizacją zmiennej i
wprowadzamy zmienną suma, której
przypisujemy wartość 0.

10

11

Zgodnie ze specyfikacją chcemy obliczyć sumę
wyłącznie tych kwadratów liczb, które są
większe od x. Za blokiem wejścia/wyjścia
wypisującym wartość zmiennej kwadrat
dodajemy blok operacyjny, w którym
zwiększymy wartość zmiennej suma
o kwadrat.

Ostatnią operacją przed zakończeniem działania
algorytmu powinno być wypisanie wartości

12

13

zmiennej suma. Po opuszczeniu pętli dodajemy
blok wejścia/wyjścia, w którym wypisujemy
wartość zmiennej suma.

Możesz zauważyć, że po znalezieniu pierwszego
kwadratu liczby, kwadrat każdej kolejnej liczby
również będzie większy od x. Wówczas nie ma
potrzeby sprawdzania warunku Czy kwadrat
> x?. Wykorzystaj tę informację i spróbuj
zmodyfikować schemat blokowy samodzielnie,
w taki sposób, by nie wykonywał
niepotrzebnych sprawdzeń.

Rozwiązanie zadania.

14

15

Sprawdź się

Pokaż ćwiczenia: 輸醙難

Ćwiczenie 1
Zaznacz wszystkie poprawne odpowiedzi. Wskaż, które zdania dotyczące iteracji są
prawdziwe.

Każdy problem można rozwiązać za pomocą algorytmu iteracyjnego.

W iteracji można użyć zmiennej, która odpowiada za liczbę cykli wykonanych przez
pętlę.

Iteracja polega na wielokrotnym wykonywaniu ciągu instrukcji.

Iteracja realizowana jest z użyciem pętli.









輸

Ćwiczenie 2

Źródło: Contentplus.pl Sp. z o.o., licencja: CC BY-SA 3.0.

Uzupełnij schemat. Rysunek przedstawia niepełny schemat blokowy algorytmu obliczania
sumy liczb całkowitych z zakresu od 1 do 25. Uzupełnij go odpowiednimi wartościami lub
nazwami zmiennych.









25 i suma 0 i++

輸

Ćwiczenie 3

Zapoznaj się ze schematem blokowym i wykonaj ćwiczenie.

Źródło: Contentplus.pl Sp. z o.o., licencja: CC BY-SA 3.0.

Wyjaśnij, jaki będzie rezultat zastosowania algorytmu przedstawionego na schemacie

blokowym.

醙

Ćwiczenie 4

Źródło: Contentplus.pl Sp. z o.o., licencja: CC BY-SA 3.0.

Wskaż na rysunku blok odpowiedzialny za inkrementację zmiennej sterującej.









醙

Ćwiczenie 5

Źródło: Contentplus.pl Sp. z o.o., licencja: CC BY-SA 3.0.

Wskaż, jaka wartość zmiennej suma zostanie wyświetlona na ekranie.

10

11

55

0

21











醙

Ćwiczenie 6

Źródło: Contentplus.pl Sp. z o.o., licencja: CC BY-SA 3.0.

Zaznacz, jaka wartość zmiennej suma zostanie wyświetlona na ekranie.

8

11

7

14









難

Ćwiczenie 7

Źródło: Contentplus.pl Sp. z o.o., licencja: CC BY-SA 3.0.

Wskaż, w jaki sposób zmodyfikować przedstawiony schemat blokowy, aby ciąg instrukcji
w pętli nie wykonał się ani razu.

przenieść wypisywanie na ekran zmiennej na początek ciągu instrukcji

przenieść warunek pętli na koniec ciągu instrukcji

przenieść inkrementację zmiennej sterującej na początek ciągu instrukcji

przenieść warunek pętli na początek ciągu instrukcji









難

Ćwiczenie 8

Źródło: Contentplus.pl Sp. z o.o., licencja: CC BY-SA 3.0.

Wskaż, ile razy zostanie wykonana instrukcja iloczyn = iloczyn i.

18

17

8

9

⋅









難

Ćwiczenie 9

Pewien ciąg opisany jest wzorem:

a = 0

a = 1 + 2 (a)

Za pomocą schematu blokowego zapisz iteracyjny algorytm obliczania n-tego wyrazu ciągu.

Przetestuj działanie programu dla n = 7.

Specyfikacja problemu:

Dane:

n – numer wyrazu ciągu; liczba naturalna

Wynik:

Program wypisuje wartość n-tego wyrazu ciągu.

0

n ⋅ n‑1

難

Dla nauczyciela

Autor: Maurycy Gast
Przedmiot: Informatyka

Temat: Algorytmy iteracyjne

Grupa docelowa:

Liceum ogólnokształcące i technikum, liceum ogólnokształcące, technikum, zakres
podstawowy

Podstawa programowa:

Cele kształcenia – wymagania ogólne

II. Programowanie i rozwiązywanie problemów z wykorzystaniem komputera oraz innych
urządzeń cyfrowych: układanie i programowanie algorytmów, organizowanie,
wyszukiwanie i udostępnianie informacji, posługiwanie się aplikacjami komputerowymi.

Treści nauczania – wymagania szczegółowe

I. Rozumienie, analizowanie i rozwiązywanie problemów.

Zakres podstawowy. Uczeń:

2) stosuje przy rozwiązywaniu problemów z różnych dziedzin algorytmy poznane
w szkole podstawowej oraz algorytmy:

e) obliczania wartości elementów ciągu metodą iteracyjną i rekurencyjną, w tym
wartości elementów ciągu Fibonacciego.

II. Programowanie i rozwiązywanie problemów z wykorzystaniem komputera i innych
urządzeń cyfrowych.

Zakres podstawowy. Uczeń:

1) projektuje i programuje rozwiązania problemów z różnych dziedzin, stosuje przy
tym: instrukcje wejścia/wyjścia, wyrażenia arytmetyczne i logiczne, instrukcje
warunkowe, instrukcje iteracyjne, funkcje z parametrami i bez parametrów, testuje
poprawność programów dla różnych danych; w szczególności programuje algorytmy
z punktu I.2);

Kształtowane kompetencje kluczowe:

kompetencje cyfrowe;
kompetencje osobiste, społeczne i w zakresie umiejętności uczenia się;
kompetencje matematyczne oraz kompetencje w zakresie nauk przyrodniczych,
technologii i inżynierii.

Cele operacyjne (językiem ucznia):

Wyjaśnisz, kiedy należy zastosować mechanizm iteracji.
Rozwiążesz problemy obliczeniowe, wykorzystując mechanizm iteracji.
Przeanalizujesz schematy blokowe algorytmów iteracyjnych.

Strategie nauczania:

konstruktywizm;
konektywizm.

Metody i techniki nauczania:

dyskusja;
rozmowa nauczająca z wykorzystaniem multimedium i ćwiczeń interaktywnych;
ćwiczenia praktyczne.

Formy pracy:

praca indywidualna;
praca w parach;
praca w grupach;
praca całego zespołu klasowego.

Środki dydaktyczne:

komputery z głośnikami, słuchawkami i dostępem do internetu;
zasoby multimedialne zawarte w e‐materiale;
tablica interaktywna/tablica, pisak/kreda;
oprogramowanie dla języka C++, w tym kompilator GCC/G++ 4.5 (lub nowszej wersji)
i Code::Blocks 16.01 (lub nowszej wersji), Orwell Dev‐C++ 5.11 (lub nowszej wersji) lub
Microsoft Visual Studio;
oprogramowanie dla języka Python 3 (lub nowszej wersji), w tym PyCharm lub IDLE;
oprogramowanie dla języka Java SE 8 (lub nowszej wersji), w tym Eclipse 4.4 (lub
nowszej wersji).

Przebieg lekcji

Przed lekcją:

1. Przygotowanie do zajęć. Nauczyciel loguje się na platformie i udostępnia e‐materiał:
„Algorytmy iteracyjne”. Uczniowie mają zapoznać się z treściami w sekcji „Przeczytaj”.

2. Chętny lub wybrany uczeń przygotowuje rozwiązanie polecenia 2 z sekcji „Animacja”.
Będzie pełnił rolę eksperta podczas zajęć.

Faza wstępna:

1. Nauczyciel wyświetla uczniom temat, wskazuje cele zajęć oraz ustala z uczestnikami
zajęć kryteria sukcesu.

2. Rozpoznanie wiedzy uczniów. Uczniowie tworzą pytania dotyczące tematu zajęć, na
które odpowiedzą w trakcie lekcji.

Faza realizacyjna:

1. Praca z multimedium. Uczniowie zapoznają się z treścią animacji. Następnie w parach
rozwiązują polecenie 2. W kolejnym kroku na forum klasy omawiają swoje rozwiązania.
Uczniowie zapoznają się indywidualnie z poleceniem 3 w sekcji „Animacja”. Wykonują
schemat blokowy, a następnie porównują go z rozwiązaniem przedstawionym
w prezentacji multimedialnej. W trakcie pracy zapisują problemy i pytania. Po czym
następuje dyskusja, podczas której uczeń‐ekspert wyjaśnia niezrozumiałe kroki
procedury.

2. Ćwiczenie umiejętności. Uczniowie wykonują ćwiczenia nr 1‐8 z sekcji „Sprawdź się”.
Nauczyciel sprawdza poprawność wykonanych zadań, omawiając je wraz z uczniami.

Faza podsumowująca:

1. Nauczyciel ponownie wyświetla na tablicy temat i cele lekcji zawarte w sekcji
„Wprowadzenie”. W kontekście ich realizacji następuje omówienie ewentualnych
problemów z rozwiązaniem ćwiczeń z sekcji „Sprawdź się”.

Praca domowa:

1. Uczniowie wykonują ćwiczenie 9 z sekcji „Sprawdź się”.

Wskazówki metodyczne:

Uczniowie znający podstawy programowania mogą zapisywać rozwiązania problemów
w języku programowania.

