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Obliczanie wartości funkcji trygonometrycznych.
Dowodzenie tożsamości trygonometrycznych -
przykłady.

W tym materiale zawarte są przykłady obliczania wartości funkcji trygonometrycznych dla
kątów ostrych. Są w nim też zaprezentowane przykłady dowodzenia równości
i nierówności związanych z funkcjami trygonometrycznymi kątów ostrych. Zapoznaj się
z tym materiałem przed przystąpieniem do rozwiązywania zadań zawartych w Obliczanie
wartości funkcji trygonometrycznych. Dowodzenie tożsamości trygonometrycznych -
zadania.

Przykład 1

Obliczymy wartość wyrażenia

.

Ponieważ dla dowolnego kąta ostrego  zachodzi równość

,

to

, .

Wobec tego

.

Przykład 2

Kąt  jest ostry i  . Obliczymy wartość wyrażenia . 
Ponieważ

,
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to

dla dowolnego kąta ostrego .

Skoro , to

.

Przykład 3

Kąt  jest ostry i  . Obliczymy wartość wyrażenia .

Ponieważ

,

to

.

Zatem dla  otrzymujemy

.

Przykład 4

Wykażemy, że . 
Wiemy, że cosinus dowolnego kąta ostrego jest mniejszy od , więc

.

Mnożymy obie strony nierówności przez liczbę dodatnią . 
Zatem
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.

Ponieważ

,

więc

,

co należało wykazać.
Przykład 5

Kąt  jest ostry i  . Obliczymy wartość wyrażenia . 
Korzystając z tożsamości , otrzymujemy

.

Wobec tego

Dla  mamy

.

Przykład 6

Kąt  jest ostry i  . Obliczymy  i  . 
Korzystając z tożsamości , otrzymujemy . Wobec
tego dla  mamy:

.
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Ponieważ , więc otrzymujemy

,

stąd

.

Przykład 7

Kąt  jest ostry i  . Obliczymy wartość wyrażenia .

 sposób

Skoro , to

.

Ponieważ , to  oraz

.

Stąd

.

 sposób

Korzystając z tożsamości stosowanych w poprzednich przykładach, wyrazimy 
 za pomocą .
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.

Wtedy dla  otrzymujemy

.

Przykład 8

Kąt  jest ostry i  . Obliczymy  i  . 

Jeśli , to , skąd . Ponadto ,
czyli

.

Zatem

.

Ponieważ , to

, .

Przykład 9
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Kąt  jest ostry i  . Obliczymy .

 sposób

Najpierw obliczamy  i  . 
Jeśli , to . Ponadto , skąd

.

Wobec tego

.

Ponieważ , to  i  ,

czyli wartość danego wyrażenia to

.

 sposób

Zauważmy, że jeśli , to . Uwzględniając tę zależność,
otrzymujemy

.

 sposób

Korzystając z tożsamości , wyrazimy  za pomocą .
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.

Skoro , to

.

Przykład 10

Wykażemy, że jeżeli kąt  jest ostry i  , to . 

Skoro , to

.

Stąd

,

czyli

.

Wynika z tego, że , a to właśnie należało wykazać.
Przykład 11

Wykażemy, że dla każdego kąta ostrego  wartość wyrażenia 
 jest równa . 

Przekształcamy wyrażenie
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Korzystamy z tożsamości , skąd

,

a to właśnie należało wykazać.
Przykład 12

Wykażemy, że jeżeli kąt  jest ostry i  , to . 
Jeśli , to , skąd 

. 
Ponieważ , to , czyli . 
Przekształcając tożsamość , otrzymujemy kolejno

.

Uwzględniając równość , otrzymujemy

,

skąd

.

Koniec dowodu.
Przykład 13
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W pewnym trójkącie prostokątnym suma sinusów kątów ostrych jest równa .
Wykażemy, że iloczyn sinusów tych kątów jest równy . 
Oznaczmy przez  i   miary kątów ostrych w danym trójkącie. Wtedy 

. 
Z warunków zadania mamy , czyli . 
Wynika z tego, że

Ponadto

.

Zatem , skąd

,

czyli

.

Koniec dowodu.
Przykład 14

Wykażemy, że dla każdego kąta ostrego  prawdziwa jest nierówność 
. 

Skorzystamy z udowodnionej wcześniej tożsamości

,

którą przekształcimy do postaci

.

31

25

168

625

α β

sinβ = sin(90°−α) = cosα

sinα+ sinβ =

31

25

sinα+ cosα =

31

25

(sinα+ cosα)

2

= (

31

25

)

2

=

961

625

(sinα+ cosα)

2

= sin

2

α+ 2 sinα cosα+ cos

2

α = 1 + 2 sinα cosα

1 + 2 sinα cosα =

961

625

2 sinα cosα =

961

625

− 1 =

336

625

sinα cosα =

168

625

α

sinα+ cosα ≤

√

2

(sinα+ cosα)

2

+ (cosα− sinα)

2

= 2

(cosα− sinα)

2

= 2 − (sinα+ cosα)

2



Ponieważ kwadrat dowolnej liczby rzeczywistej jest nieujemny, to 
dla dowolnego kąta ostrego . 
Wynika z tego, że

czyli

.

Stąd

.

Koniec dowodu.
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