
Działania na pierwiastkach

Definicja pierwiastka dowolnego stopnia. Twierdzenia o działaniach na pierwiastkach.



Działania na pierwiastkach

W tym materiale poznasz pojęcia i twierdzenia związane z pierwiastkami.

Pierwiastkiem kwadratowym z liczby nieujemnej  nazywamy liczbę nieujemną  taką,
która podniesiona do drugiej potęgi jest równa . 
Zatem, dla dowolnej liczby nieujemnej :  wtedy i tylko wtedy, gdy  i 
.

Pierwiastkiem sześciennym z liczby  nazywamy taką liczbę , która podniesiona do
trzeciej potęgi jest równa . 
Zatem, dla dowolnej liczby :  wtedy i tylko wtedy, gdy .

Zauważmy, że powyższe definicje różnią się założeniami dla liczb  i  . Ponieważ  jest
zawsze liczbą nieujemną, to pierwiastki kwadratowe obliczamy wyłącznie z liczb
nieujemnych. Natomiast  może być zarówno ujemne, jak i nieujemne, dlatego pierwiastek
sześcienny obliczamy z dowolnej liczby . 
Podobnie możemy zapisać definicje pierwiastka stopnia  większego niż , pamiętając
o odpowiednim założeniu dotyczącym liczby podpierwiastkowej.

Jeśli  jest liczbą parzystą większą od , to pierwiastkiem stopnia  z liczby nieujemnej 
 nazywamy liczbę nieujemną  taką, która podniesiona do potęgi  jest równa .

Jeśli  jest liczbą nieparzystą większą od  to pierwiastkiem stopnia  z liczby 
nazywamy liczbę  taką, która podniesiona do potęgi  jest równa .

Twierdzenie: Działania na pierwiastkach

Jeśli  i   są liczbami nieujemnymi,  i   są liczbami naturalnymi większymi od ,  jest
dodatnią liczbą naturalną, to:
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Jeśli w powyższym twierdzeniu liczby  i   (stopnie pierwiastków) są nieparzyste, to
twierdzenie pozostanie prawdziwe również dla ujemnych liczb podpierwiastkowych (
lub ).
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