Wróć do informacji o e-podręczniku Wydrukuj Pobierz materiał do PDF Pobierz materiał do EPUB Pobierz materiał do MOBI Zaloguj się, aby dodać do ulubionych Zaloguj się, aby skopiować i edytować materiał Zaloguj się, aby udostępnić materiał Zaloguj się, aby dodać całą stronę do teczki

Topicm7af11d61b73f61bb_1528449000663_0Topic

Inducing the flow of electric current

Levelm7af11d61b73f61bb_1528449084556_0Level

Third

Core curriculumm7af11d61b73f61bb_1528449076687_0Core curriculum

VIII. Magnetism. The student:

3) describes the phenomenon of electromagnetic inductionelectromagnetic inductionelectromagnetic induction and its relation to the relative movement of the magnet and coil or the change of the current in the electromagnet; describes energy conversions during the operation of the generator.

Timingm7af11d61b73f61bb_1528449068082_0Timing

45 minutes

General learning objectivesm7af11d61b73f61bb_1528449523725_0General learning objectives

Describes the phenomenon of electromagnetic induction.

Key competencesm7af11d61b73f61bb_1528449552113_0Key competences

1. Illustrates the phenomenon of electromagneticelectromagnetic inductionelectromagnetic induction with help of a simple experiment.

2. Explains the role of magnetic field in the phenomenon of electromagnetic induction.

Operational (detailed) goalsm7af11d61b73f61bb_1528450430307_0Operational (detailed) goals

The student:

- explains what the electromagnetic induction is,

- performs an experiment illustrating the phenomenon of electromagnetic induction.

Methodsm7af11d61b73f61bb_1528449534267_0Methods

1. Discussion.

2. Experiment.

Forms of workm7af11d61b73f61bb_1528449514617_0Forms of work

1. Individual work.

2. Group work.

Lesson stages

Introductionm7af11d61b73f61bb_1528450127855_0Introduction

The students remind the characteristics of electromagnets.

How does an electromagnet work?

Procedurem7af11d61b73f61bb_1528446435040_0Procedure

The ordered flow of charged particles in a current‑carrying conductorconductorconductor forms the magnetic field around it. Now, we check if the changes in magnetic field can cause the ordered flow of the charge particles in a conductor.

The students prepare the introductory experiment.

Experiment
Electromagnetic inductionelectromagnetic inductionElectromagnetic induction.

Problem: 
How does the magnetic field influence a conductorconductorconductor?

Hypothesis: 
Magnetic field can induce a current flow in a conductor.

Materials:  
- insulated copper wire, 
- compass, 
- matchbox or other small box, 
- magnet, 
- adhesive tape.

Procedure:

1. Wind 50 turns of insulated copper wire around a matchbox. Take the coil of wire off the matchbox. Fasten it with an adhesive tape. Make two such coils.

2. Connect the ends of both coils together. Fix a small compass inside one coil in such way that the compass needle lies along the longer side of the coil.

3. Move the bar magnet into the other coil. Observe what is happening with the compass needle.

4. Move the magnet out of the coil. What is happening with the compass needle?

Conclusion: 
When the magnet moves inside the coil, the compass needle turns. When the magnet moves out of the coil, the needle turns in the opposite direction.

[Illustration 1]

[Illustration 2]

Electromagnetic inductionelectromagnetic inductionElectromagnetic induction:

Definition:

Electromagnetic induction is a phenomenon where in a conductorconductorconductor placed in a changing magnetic field an electrical current flows.

Faraday’s law states that when the strength of a magnetic field changes within a closed loop of wire, a current will flow and its magnitude depends on the rate of change of the magnetic field.

Another law, related to the current inducedinducedinduced in a coil by changing magnetic field is the Lenz’s law. It states that the direction of the inducedinducedinduced current is such that the magnetic field created by the induced current opposes the initial changing magnetic field.

[Interactive graphics]

The current is induced in the coil when a bar magnet moves in and out of the coil. The same current is induced if a magnet is fixed and the coil moves. The greater the speed of the movement, the greater the current intensity. When there is no motion, the current intensity is equal to zero.
The same phenomenon is observed when the magnet is replaced by another coil connected to the source of electricity. Here, the current in the first coil produces a magnetic field. This magnetic field induces a current in the second coil, but only in that moment when the magnetic field is changing (coil is moving).
m7af11d61b73f61bb_1527752256679_0The current is induced in the coil when a bar magnet moves in and out of the coil. The same current is induced if a magnet is fixed and the coil moves. The greater the speed of the movement, the greater the current intensity. When there is no motion, the current intensity is equal to zero.
The same phenomenon is observed when the magnet is replaced by another coil connected to the source of electricity. Here, the current in the first coil produces a magnetic field. This magnetic field induces a current in the second coil, but only in that moment when the magnetic field is changing (coil is moving).

[Illustration 3]

Lesson summarym7af11d61b73f61bb_1528450119332_0Lesson summary

Electromagnetic induction is a phenomenon where in a conductor placed in a changing magnetic field an electrical current flows. The current intensity depends on the rate of change of the magnetic field.m7af11d61b73f61bb_1527752263647_0Electromagnetic induction is a phenomenon where in a conductor placed in a changing magnetic field an electrical current flows. The current intensity depends on the rate of change of the magnetic field.

Selected words and expressions used in the lesson plan

circuitcircuitcircuit

conductorconductorconductor

electromagnetic inductionelectromagnetic inductionelectromagnetic induction

electromotive forceelectromotive forceelectromotive force

inducedinducedinduced

varying magnetic fieldvarying magnetic fieldvarying magnetic field

voltagevoltagevoltage

m7af11d61b73f61bb_1527752263647_0
m7af11d61b73f61bb_1527752256679_0
m7af11d61b73f61bb_1528449000663_0
m7af11d61b73f61bb_1528449084556_0
m7af11d61b73f61bb_1528449076687_0
m7af11d61b73f61bb_1528449068082_0
m7af11d61b73f61bb_1528449523725_0
m7af11d61b73f61bb_1528449552113_0
m7af11d61b73f61bb_1528450430307_0
m7af11d61b73f61bb_1528449534267_0
m7af11d61b73f61bb_1528449514617_0
m7af11d61b73f61bb_1528450127855_0
m7af11d61b73f61bb_1528446435040_0
m7af11d61b73f61bb_1528450119332_0
electromagnetic induction1
electromagnetic induction

indukcja elektromagnetyczna

R1Rs9w4Ib6zyE1
wymowa w języku angielskim: electromagnetic induction
conductor1
conductor

przewodnik

R1UTxjrRXZrVH1
wymowa w języku angielskim: conductor
induced1
induced

indukowany

RH0cH0cyRyh4v1
wymowa w języku angielskim: induced
circuit1
circuit

obwód

R11mYriFl9dwu1
wymowa w języku angielskim: circuit
electromotive force1
electromotive force

siła elektromotoryczna

RKWg5tpkIClbQ1
wymowa w języku angielskim: electromotive force
varying magnetic field1
varying magnetic field

zmienne pole magnetyczne

RwkKa1zbXTte71
wymowa w języku angielskim: varying magnetic field
voltage1
voltage

napięcie

R1C9uuGdGCnMt1
wymowa w języku angielskim: voltage