Zgodnie z I zasadą termodynamiki zmiana energii wewnętrznej układu ΔdeltaU równa jest sumie ciepła przekazanego do układu Q i pracy WIndeks dolny zz wykonanej nad układem przez siłę zewnętrzną.
Rozważmy 1 mol gazu zamknięty w cylindrze z ruchomym tłokiem. W przemianie izochorycznej przy stałej objętości, V = const., tłok nie zmienia swojego położenia, więc praca, będąca iloczynem siły i przesunięcia, równa jest zeru (Rys. 1.). Wynika z tego, że całe pobrane ciepło Q zamienia się na przyrost energii wewnętrznej ΔdeltaU.
Gdy wzrasta energia wewnętrzna gazu doskonałegogaz doskonałygazu doskonałego, zwiększa się też jego temperatura. Zmiana energii wewnętrznej gazu doskonałegogaz doskonałygazu doskonałegoΔdeltaU jest wprost proporcjonalna do zmiany temperatury ΔdeltaT i można wyrazić ją wzorem:
gdzie n – to liczba moli gazu, R – stała gazowa (R = 8,31 J/K).
Rra2uS2JUican
Rys. 1. Rysunek poglądowy przedstawia graficzną interpretację treści. Na ilustracji widoczny jest rysunek cylindrycznego naczynia zamkniętego na pewnej wysokości tłokiem. Naczynie narysowane jest w postaci błękitnego walca a tłok jest ciemnoniebieski. W naczyniu zamknięty jest gaz doskonały, którego ciepło wielka litera Q równa się wielka gracka litera delta i wielka litera U, jest zużywany na zwiększenie energii wewnętrznej. Ciepło oznaczone jest wielką literą Q a zmiana energii wewnętrznej wielką grecka litera delta i wielką literą U. Dostarczanie ciepła do układu narysowane jest, jako pozioma, pomarańczowa strzałka z lewej strony naczynia, skierowana do naczynia i podpisana wielką literą Q. Rysunek przedstawia układ izochoryczny, a zatem dostarczenie ciepła nie zmienia położenia tłoka.
Rys. 1. Izochoryczne ogrzewanie gazu doskonałego. Praca równa jest zeru. Całe pobrane ciepło Q zamienia się na przyrost energii wewnętrznej ΔU, a tym samym wzrost temperatury ΔT
Źródło: Politechnika Warszawska Wydział Fizyki, licencja: CC BY 4.0. Licencja: https://creativecommons.org/licenses/by/4.0/deed.pl.
Przyrównując prawe strony równań (1) i (2) otrzymujemy związek pobranego ciepła Q ze zmianą temperatury ΔdeltaT :
Ciepło molowe to ciepło, jakie pobiera 1 mol gazu, gdy jego temperatura zwiększa się o 1 K. Wstawiając więc do równania (3) n = 1 mol oraz , otrzymujemy wzór na ciepło molowe gazu doskonałegogaz doskonałygazu doskonałego przy stałej objętości CIndeks dolny VV:
Ciepło pobrane przez n moli gazu doskonałegogaz doskonałygazu doskonałego przy stałej objętości możemy zapisać jako:
gdzie TIndeks dolny 11 i TIndeks dolny 22 to temperatury początkowa i końcowa.
Zauważ, że gdy temperatura końcowa jest mniejsza niż początkowa, , to ciepło pobrane Q jest ujemne, co oznacza, że gaz oddał ciepło.
W przemianie izobarycznej, gdy gaz pobiera ciepło przy stałym ciśnieniu, zwiększa się temperatura i objętość gazu. Objętość jest wprost proporcjonalna do temperatury: . (Rys. 2.).
R1W9pEoSalT6j
Rys. 2. Rysunek poglądowy przedstawia graficzną interpretację treści. Na ilustracji widoczny jest rysunek cylindrycznego naczynia zamkniętego na pewnej wysokości tłokiem. Naczynie narysowane jest w postaci błękitnego walca a tłok jest ciemnoniebieski. W naczyniu zamknięty jest gaz doskonały, którego ciepło wielka litera Q równa się wielka gracka litera delta i wielka litera U dodać mała litera p wielka grecka litera delta i wielka litera V, jest zużywany na zwiększenie energii wewnętrznej i pracę. Ciepło oznaczone jest wielką literą Q, zmiana energii wewnętrznej wielką grecka litera delta i wielką literą U a pracę symbolizuje wyrażenie mała litera p pomnożona przez wielka grecka litera delta i wielka litera V. Mała litera p oznacza ciśnienie a wielka grecka litera delta i wielka litera V oznacza zmianę objętości. Dostarczanie ciepła do układu narysowane jest, jako pozioma, pomarańczowa strzałka z lewej strony naczynia, skierowana do naczynia i podpisana wielką literą Q. Rysunek przedstawia układ izobaryczny, a zatem dostarczenie ciepła zmienia położenie tłoka. Tłok przesuwany jest ku górze naczynia, co symbolizuje zwiększenie objętości gazu doskonałego w naczyniu.
Rys. 2. Izobaryczne ogrzewanie gazu doskonałego. Pobrane ciepło Q zamienia się na przyrost energii wewnętrznej ΔU oraz na pracę wykonaną przez gaz równą pΔV
Źródło: Politechnika Warszawska Wydział Fizyki, licencja: CC BY 4.0. Licencja: https://creativecommons.org/licenses/by/4.0/deed.pl.
Gdy zwiększa się objętość, siła parcia gazu przesuwa tłok, wykonując pracę , gdzie p to ciśnienie, przy którym zachodzi przemiana, ΔdeltaV – zmiana objętości gazu. (Wzór ten jest wyprowadzony w e‑materiale pod tytułem „Jak zinterpretować wykres przemian gazu doskonałegogaz doskonałygazu doskonałego”). W tej przemianie do zwiększenia temperatury o ΔdeltaT potrzeba większej ilości ciepła niż w przemianie izochorycznej. Pobrane ciepło jest zużywane na zwiększenie energii wewnętrznej, a tym samym temperatury, oraz na pracę wykonaną przez gaz podczas zwiększania objętości.
Gdy 1 mol gazu pobiera ciepło równe ciepłu molowemu przy stałym ciśnieniu CIndeks dolny pp, jego temperatura zwiększa się o 1 K. Dostarczonego ciepła musi wystarczyć do zwiększenia energii wewnętrznej gazu, związanym ze wzrostem temperatury o 1 K, oraz do wykonania przez gaz pracy podczas przesuwania tłoka.
Różnica między ciepłem molowym przy stałym ciśnieniu CIndeks dolny pp i ciepłem molowym przy stałej objętości CIndeks dolny VV równa jest pracy wykonanej przez 1 mol gazu doskonałegogaz doskonałygazu doskonałego podczas zwiększania temperatury o 1 K przy stałym ciśnieniu (Rys. 3.).
RyjY7Bpch5kFC
Rys. 3. Ilustracja przedstawia rysunek, na którym przedstawiona proces izobarycznego ogrzewania gazu doskonałego w zamkniętym pojemniku. Ilustracja podzielona jest na dwie części, prawą oraz lewą. Obie części przedstawiają naczynia w postaci cylindrycznych pojemników o ciemnoniebieskich krawędziach i jasnoniebieskich wypełnieniach. Pojemniki są tej samej wielkości. W naczyniach znajduje się taka sama ilość gazu doskonałego, opisana jako mała litera n równa się jeden mol. Gaz zamknięty jest w pojemnikach ciemnoniebieskimi pokrywkami w kształcie dysków. W lewym pojemniku parametry gazu opisano przy pomocy podstawowych parametrów termodynamicznych, takich jak ciśnienie mała litera p, objętość wielka litera V i temperatura wielka litera T. Są to parametry początkowe układu. W naczyniu po lewej stronie, pokrywka, która ogranicza objętość gazu w naczyniu znajduje się w trzech czwartych wysokości naczynia. Po prawej stronie widoczny jest ten sam układ termodynamiczny, do którego dostarczono pewną ilość energii. Ciepło pobrane przez układ to ciepło molowe przy stałej objętości opisane jako wielka litera C z indeksem dolnym mała litera p. W naczyniu po prawej stronie, pokrywka która zamyka gaz doskonały w pojemniku znajduje się wyżej niż na rysunku po lewej stronie. Ilustracja przedstawia proces izobarycznego ogrzewania, a zatem ciśnienie gazu po dostarczeniu do układu energii nie zmienia się. W naczyniu po prawej stronie panuje ciśnienie opisane małą literą p. Dostarczenie energii do układu powoduje zmiany wartości pozostałych parametrów termodynamicznych, takich jak objętość i temperatura. Objętość gazu w naczyniu po prawej stronie jest większa i opisana jest jako objętość początkowa wielka litera V powiększona o przyrost, którego symbolem jest wielka grecka litera delta i wielka litera V. Temperatura gazu w naczyniu po prawej stronie opisana jest jako suma temperatury początkowej wielka litera T i przyrostu temperatury opisanego jako wielka grecka litera delta i wielka litera T. Na ilustracji po lewej stronie widnieje informacja, że przyrost temperatury, do którego doszło wskutek dostarczenia do układu termodynamicznego energii wielka grecka litera delta i wielka litera T jest równy jednemu Kelvinowi.
Rys. 3. Izobaryczne ogrzewanie 1 mola gazu doskonałego o 1K. Ciepło pobrane przez gaz to ciepło molowe przy stałym ciśnieniu Cp
Źródło: Politechnika Warszawska Wydział Fizyki, licencja: CC BY 4.0. Licencja: https://creativecommons.org/licenses/by/4.0/deed.pl.
Aby obliczyć pracę W, skorzystamy z równania przemiany izobarycznej :
Skąd możemy wyznaczyć zmianę objętości:
oraz pracę wykonaną w przemianie:
Podstawiamy ΔdeltaT = 1 K i otrzymujemy:
Różnica między ciepłem molowym przy stałym ciśnieniu CIndeks dolny pp i ciepłem molowym przy stałej objętości CIndeks dolny VV równa jest stałej gazowej R.
Dla gazu doskonałegogaz doskonałygazu doskonałego wartość ciepła molowego przy stałym ciśnieniu CIndeks dolny pp wynosi:
Ciepło pobrane przez n moli gazu doskonałegogaz doskonałygazu doskonałego w przy stałym ciśnieniu zapisujemy jako:
gdzie TIndeks dolny 11 i TIndeks dolny 22 to temperatury początkowa i końcowa.
Zauważ, że nasze rozważania dotyczyły gazu doskonałego, którego cząsteczki traktujemy jako punkty materialne. Podane powyżej wartości ciepła molowego przy stałej objętości i przy stałym ciśnieniu dotyczą tylko gazów o cząsteczkach jednoatomowych, takich jak hel, neon i inne gazy szlachetne. Cząsteczki jednoatomowe mogą poruszać się tylko ruchem postępowym i możemy traktować je jako punkty materialne. Inaczej jest z gazami dwuatomowymi, na przykład NIndeks dolny 22, OIndeks dolny 22, CO. Takie cząsteczki oprócz ruchów postępowych mogą wykonywać też ruchy obrotowe. Dlatego ciepło molowe gazów dwuatomowych ma większą wartość.
Dla gazów dwuatomowych wartość ciepła molowego przy stałej objętości wynosi:
A ciepło molowe przy stałym ciśnieniu:
Stosunek ciepła molowego przy stałym ciśnieniu do ciepła molowego przy stałej objętości odgrywa ważną rolę w termodynamice. Występuje jako parametr w równaniu opisującym przemianę adiabatycznąprzemiana adiabatycznaprzemianę adiabatyczną, nazywamy go wykładnikiem adiabaty. Wartość współczynnika κkappa zależy od budowy cząsteczki gazu. Dla gazu o cząsteczkach jednoatomowych (np. He) κkappa = 1,66, dla gazów dwuatomowych (np. OIndeks dolny 22, NIndeks dolny 22) κkappa = 1,4, dla gazów o cząsteczkach 3 i więcej atomowych κkappa = 1,33.
Słowniczek
gaz doskonały
gaz doskonały
(ang.: ideal gas) fizyczny model gazu spełniający warunki:
Cząsteczki gazu o zaniedbywalnie małych rozmiarach poruszają się chaotycznie.
Zderzenia cząsteczek są idealnie sprężyste, a poza zderzeniami cząsteczki nie oddziałują ze sobą.
przemiana adiabatyczna
przemiana adiabatyczna
(ang.: adiabatic process) przemiana gazu doskonałego, w której nie zachodzi wymiana ciepła z otoczeniem.