Rośliny transgeniczne
Produkcja leków z wykorzystaniem zmodyfikowanych genetycznie bakterii prowadzona jest od lat i nie wywołuje protestów, jednak uprawa roślin transgenicznych to temat kontrowersyjny, budzący silne emocje. Dlaczego społeczeństwa są tak bardzo podzielone w sprawie roślin i żywności modyfikowanej genetycznie?
człowiek modyfikuje genetycznie organizmy po to, by miały pożądane przez niego cechy;
skrót GMO oznacza organizmy modyfikowane genetycznie.
omawiać znaczenie roślin modyfikowanych genetycznie;
wymieniać wady oraz zalety stosowania roślin modyfikowanych genetycznie.
1. Rośliny transgeniczne
Zmienność genetyczna to powszechna cecha życia. Organizmy zmodyfikowane genetycznie, a tym samym i wytwarzane z nich pokarmy, są i zawsze były częścią przyrody. Pojawiają się w wyniku mutacji – zmian naturalnie zachodzących w przyrodzie. Przykład takich przekształceń stanowi pszenżyto, płodny mieszaniec pszenicy i żyta, który zawiera chromosomy (a tym samym i geny) obu roślin macierzystych. Powszechnie wykorzystuje się pszenżyto w rolnictwie i hodowli, ponieważ ma dużo białka (jak pszenica), dzięki czemu jest rośliną paszową. Ponadto ma mniejsze wymagania w uprawie niż żyto.
Rośliny i inne organizmy powstałe w wyniku doboru sztucznego oraz naturalnego zawierają jedynie geny, które wytworzyła sama przyroda. Dzięki trwającym wieki zabiegom hodowlanym i selekcji wysiewane obecnie na polach zboża nie przypominają gatunków, od których pochodzą. Dzikie formy zbóż w większości zanikły, gdyż zostały wyparte przez masowo produkowane nowe odmiany.
Przykładem roślin, których geny występują w nowym zestawie, a tym samym przejawiają się w postaci nowych cech są truskawki – mieszańce odmian dziko rosnących poziomek. Powstały w XVIII w. ze skrzyżowania poziomek pochodzących z Ameryki Południowej i Północnej. Ich twórcami są ogrodnicy pracujący na dworze Ludwika XIV.
Modyfikacje genetyczne polegają na:
zmianie aktywności obecnych w organizmach genów – geny zostały usunięte lub zablokowane; przykładem jest zmodyfikowany ziemniak, w którym nie działa gen odpowiedzialny za produkcję solaniny – toksycznej substancji zawartej w zielonych częściach tej rośliny;
wprowadzeniu powielonych kopii własnych genów danego organizmu po to, by uzyskać cechę o dużym nasileniu; przykładem jest ziemniak z powieloną kopią własnego genu odpowiedzialnego za produkcję skrobi; lepiej nadaje się do produkcji frytek, ponieważ podczas smażenia chłonie mniej oleju;
wprowadzeniu do genomu genów występujących w naturze, ale w innym organizmie niż ten, który poddano modyfikacji; przykładem jest roślina o nazwie krokosz, zawierająca ludzki gen odpowiadający za produkcję insuliny.
Obecnie możliwe jest wybieranie konkretnych genów i wprowadzanie ich do roślin. Powstałe w ten sposób rośliny transgeniczne i pozyskane z nich produkty poddaje się bardzo rygorystycznym badaniom, by wykluczyć na przykład pojawienie się alergii u ludzi oraz ewentualny szkodliwy wpływ na inne rośliny i zwierzęta.
2. Kultury tkankowe
Komórki roślinne zachowują zdolność dzielenia się oraz odtwarzania tkanek i organów niemal przez całe życie. Nie wszystkie jednak dzielą się w takim samym tempie. Zależy to od ich wieku, kondycji, grubości ściany komórkowej, stopnia specjalizacji, a nawet położenia w roślinie. Na przykład komórki pobrane z górnej części korzenia marchwi namnażają się wolniej niż te pobrane z części dolnej (stożka wzrostu). Z tego powodu do hodowli tkankowych najczęściej wykorzystuje się komórki pochodzące z bardzo młodych roślin (lub ich stożków wzrostu, w których komórki nie przystąpiły do procesu różnicowania). Aby pobrane z rośliny komórki rozmnażały się trzeba stworzyć im odpowiednie warunki. Umieszcza się je w szklanych naczyniach w wysterylizowanym środowisku, na specjalnie dobranych pożywkach.
Zwykle po umieszczeniu w pożywce komórka tworzy najpierw tkankę kalusowątkankę kalusową (kallus). Powstaje ona w naturze w miejscu zranienia rośliny i ma postać bezkształtnej grupy niezróżnicowanych komórek, podobnych do miękiszowych, choć od nich większych i stale się dzielących. Kallus rozrastając się, zamyka ranę. W zależności na przykład od rodzaju i ilości hormonów roślinnych, które docierają do kallusa, jego komórki mogą zacząć różnicowanie, odtwarzając określony organ. Ta tkanka dobrze rozwija się w odpowiednio dobranej temperaturze i przy dużej wilgotności. Trzeba jej też zapewnić właściwej długości okresy światła i ciemności. Z tego powodu rozmnażanie komórek odbywa się w fitotronach, czyli pomieszczeniach, których warunki można precyzyjnie kontrolować.
Zdolności regeneracyjne komórek zostały wykorzystane do prowadzenia hodowli in vitro (w szkle, czyli w zamkniętych naczyniach w specjalnie zorganizowanych warunkach laboratoryjnych). Pochodzące z nich komórki (tkanki i organy) mają identyczny genotyp. Służą do wytworzenia roślin matecznych, które zostaną rozmnożone wegetatywnie i posłużą do uzyskania sadzonek o identycznych cechach. Otrzymane w ten sposób sadzonki są wolne od patogenów, co ułatwia ich uprawę i ogranicza potrzebę stosowania środków ochrony. Tak powstają na przykład rośliny chmielu.
Podaj przykład sytuacji, w której u roślin pojawia się tkanka kalusowa.
W jaki sposób ukorzeniają się sadzonki pędowe?
3. Agroinfekcje i ich wykorzystanie
W przyrodzie występują organizmy pełniące rolę inżynierów genetycznych. Jednym z nich jest pospolita bakteria glebowa Agrobacterium tumefaciens. Powoduje ona chorobę zwaną guzowatością korzeni u przeszło 600 gatunków roślin. Agrobacterium wnika do skaleczonych tkanek i nakierowuje metabolizm komórek roślinnych na produkcję substancji nieprzydatnych roślinie, lecz cennych dla bakterii. Dzieje się tak w wyniku przekazania przez bakterię fragmentu DNA (tzw. T‑DNA) pochodzącego z jej plazmidu do komórki roślinnej. DNA bakterii wbudowuje się w DNA rośliny i zwiększa produkcję hormonów roślinnych odpowiedzialnych za podziały komórek. Zainfekowane komórki dzielą się, powodując powstanie narośli.
Zdolność bakterii do przekazywania swojego materiału genetycznego komórkom roślinnym została wykorzystana w inżynierii genetycznej. Część DNA bakterii jest zakodowane na plazmidzie, który wnika do komórek roślinnych. Metodami inżynierii genetycznej można w Agrobacterium umieszczać dowolne geny kodujące wybrane białka, a usuwać te geny bakterii, których produkty są niebezpieczne dla roślin. Gdy plazmid wnika do komórek roślinnych, następuje synteza białek zakodowanych w genach umieszczonych na plazmidzie oraz innych białek zakodowanych w genomie roślinnym.
4. Przykłady roślin modyfikowanych genetycznie
Rośliny modyfikowane genetycznie są łatwiejsze i tańsze w uprawie, lepsze jakościowo lub trwalsze od tradycyjnych. Możemy wśród nich wyróżnić:
rośliny odporne na środki chwastobójcze (herbicydy), posiadające enzymy, które rozkładają wybrane substancje zawarte w herbicydach; podczas uprawy takich roślin można opryskiwać pola środkami chwastobójczymi, które nie przynoszą im szkody; ułatwia to zabiegi pielęgnacyjne i zmniejsza ich koszty;
rośliny odporne na choroby wywoływane przez grzyby, wirusy i bakterie; posiadają one geny kodujące białka, które niszczą ściany lub błony komórkowe patogenów; uprawy zboża zakażone przez grzyby są dużym problemem zarówno ekonomicznym, jak i zdrowotnym; zainfekowane zboża nie nadają się do sprzedaży, gdyż zawierają toksyny wytworzone przez grzyby i muszą zostać zniszczone; jeśli zostaną sprzedane, mogą stać się przyczyną zatruć pokarmowych lub powstawania nowotworów; genetycznie zmodyfikowane zboża mają geny odpowiedzialne za produkcję enzymów niszczących ścianę komórkową grzybów, uniemożliwiając im wzrost i rozwój; innymi patogenami są wirusy roślinne, które uszkadzają liście i powodują spadek plonów; ziemniak GM jest przykładem rośliny odpornej na działanie wirusa powodującego liściozwój – chroni się przed wirusem produkując białka jego otoczki, nie choruje i jest odporny na zakażenie, ponieważ wirusy nie wnikają do komórek już zainfekowanych; podobne modyfikacje zostały zastosowane w owocach papai czy dyni; zmodyfikowana papaja stanowi na Hawajach 80% upraw;
rośliny odporne na owady‑szkodniki; rośliny te mają dodatkowy, pochodzący z bakterii Bacillus, gen (Bt) kodujący białko, które jest toksyczne dla owadów, ale nie szkodzi roślinom ani spożywającym je zwierzętom hodowlanym i ludziom; dzięki czemu rolnicy, którzy uprawiają odporne na owady odmiany kukurydzy i bawełny, nie muszą stosować insektycydówinsektycydów, czyli środków owadobójczych;
rośliny odporne na niektóre czynniki środowiska, np. przymrozki, suszę, brak pewnych pierwiastków w glebie; niezależnie od warunków środowiska rośliny te wysoko plonują; można je też wprowadzać do uprawy na obszarach, gdzie do tej pory się nie udawały;
rośliny o wyższej jakości użytkowej; dają na przykład trwalsze, nadające się do długiego przechowywania owoce; te rośliny mają geny blokujące powstawanie enzymów rozkładających ścianę komórkową przejrzałych owoców; inne gatunki mogą też zawierać substancje wzbogacające dietę; należy do nich złoty ryż, który wytwarza karoten (prowitaminę A).
Witamina A jest niezbędna dla człowieka, a jej niedobór może powodować lub przyczyniać się do powstawania ślepoty, łuszczycy, łysienia oraz innych chorób. Złoty ryż został stworzony z myślą o niedożywionych mieszkańcach krajów rozwijających się. Porcja złotego ryżu zaspokaja nawet 60% dziennego zapotrzebowania na witaminę A u dzieci.
Innymi przykładami roślin modyfikowanych są: kukurydza i ziemniaki zawierające więcej skrobi niż uprawy tradycyjne, pszenica produkująca dużo białka, kawa wytwarzająca niewielką ilość kofeiny, truskawki wydające bardzo słodkie owoce, rośliny ozdobne o większych, barwniejszych i bardziej pachnących kwiatach. Pojawiają się także rośliny zawierające szczepionki i antybiotyki.
Wiązy, drzewa używane do nasadzeń parkowych i przydrożnych w Wielkiej Brytanii i na zachodzie Europy, zaatakowała szybko rozprzestrzeniająca się i niezwykle groźna choroba. Straty to miliony obumarłych drzew. Wywołuje ją nowa odmiana grzyba przenoszonego przez korniki, będącego mieszańcem dwóch gatunków. Odmiana ta pojawiła się spontanicznie prawdopodobnie w Chinach. Obecnie prowadzone są badania mające na celu wprowadzenie do komórek wiązów genów odporności na te grzyby.
Znajdź w Internecie informacje uzasadniające wydanie zgody lub jej brak na produkcję roślin GM w wybranych państwach świata.
5. Nadzieje i obawy
Stosowanie roślin modyfikowanych genetycznie z punktu widzenia człowieka niesie ze sobą wiele korzyści. Jedna z nich to możliwość skonstruowania odmian odpornych na niekorzystne warunki środowiska, a co za tym idzie prowadzenia hodowli w nieprzyjaznych warunkach atmosferycznych (np. w bardzo zimnym lub suchym i gorącym klimacie). Przeszło 40% światowych zbiorów ulega zniszczeniu z powodu szkodników i chorób roślin. Stosowanie GMO pozwala zwiększyć plony oraz ograniczyć stosowanie chemicznych substancji owadobójczych. Obniża to koszty produkcji roślinnej. Żywność modyfikuje się także w celu poprawy jej walorów smakowych oraz wydłużenia trwałości. W roślinach zmodyfikowanych za pomocą metod inżynierii genetycznej można produkować substancje, np. leki, które później są izolowane z komórek roślin i wykorzystywane w przemyśle.
Istnieją jednak również wady modyfikacji genetycznych. Z powodu stosunkowo krótkiego czasu stosowania modyfikowanych roślin nie wiadomo, czy spożywanie przez człowieka żywności GMO nie spowoduje na przykład alergii. Mimo prowadzonych badań nie uzyskano danych naukowych, które by potwierdzały, że produkty pochodzące z roślin transgenicznych nie są toksyczne dla człowieka. Nie ma też dowodów na to, że są dla ludzkiego organizmu szkodliwe.
Istnieją obawy, że geny odporności na herbicydy lub owady mogą przenikać z roślin GM do roślin dzikich (niezmodyfikowanych), a tym samym wpływać na ekosystemy oraz powodować, że wszystkie rośliny, zwłaszcza te określane przez człowieka jako chwasty, będą trudne do zwalczenia obecnie używanymi środkami. Ponadto dziko występujące gatunki mogą zostać wyparte i zastąpione modyfikowanymi, co będzie negatywnie oddziaływać na bioróżnorodność.
Przeciwnicy upraw roślin GM obawiają się, że po zjedzeniu organizmu modyfikowanego genetycznie może dojść do zmian w genomie człowieka. Czy twoim zdaniem takie obawy mają sens? Uzasadnij swoją odpowiedź.
W USA istnieją liczące setki hektarów pola obsadzone zmodyfikowaną kukurydzą, na których trudno znaleźć jakiekolwiek owady roślinożerne i ptaki owadożerne. Rzecz w tym, że nie wiadomo na pewno, czy jest to wpływ GMO, czy efekt dawnych metod uprawy z wykorzystaniem dużych ilości chemicznych środków ochrony roślin. Dlatego prowadzone są badania bezpośredniego wpływu upraw GMO na owady i pośredniego na ptaki owadożerne.
Podsumowanie
Początki modyfikacji roślin na drodze doboru naturalnego sięgają 10 tys. lat wstecz.
Modyfikacje genetyczne pozwalają na uzyskanie roślin o lepszych walorach smakowych, bardziej odpornych na szkodniki, dających większe plony.
W roślinach modyfikowanych, w celu ich ochrony przed szkodnikami, wykorzystuje się toksynę bakteryjną Bt.
Modyfikacje roślin pozwalają m.in. na ograniczenie chemicznych środków ochrony roślin.
Rośliny modyfikowane mogą zaburzać bioróżnorodność i wypierać rośliny dzikie.
Za pomocą metod inżynierii genetycznej w komórkach roślin można produkować substancje użyteczne dla człowieka.
Metoda agroinfekcji wykorzystuje naturalną zdolność wnikania plazmidów bakterii Agrobacterium do komórek roślin.
1. Przygotuj się do debaty pod hasłem „Rośliny transgeniczne – nadzieje i obawy”. Niezależnie od posiadanego poglądu, przygotuj 5 argumentów za uprawą takich roślin i 5 przeciw niej. Zadbaj, by argumenty miały wartość naukową, a nie opierały się na emocjach.
2. Przygotowując się do debaty, wynotuj źródła informacji, z których korzystasz. Sprawdź, kto jest nadawcą komunikatów i jaką korzyść odniesie, gdy przekona czytelników do swoich racji.
Słowniczek
metoda otrzymywania roślin modyfikowanych genetycznie z wykorzystaniem bakterii Agrobacterium tumefaciens
chemiczne środki przeznaczone do zwalczania w uprawach niepożądanych roślin
środki używane do zwalczania owadów uznawanych zaszkodniki upraw rolnych
rodzaj tkanki twórczej pojawiającej się w miejscu zranienia; tworzy bezkształtną masę komórek zdolnych do szybkich podziałów, zabliźniających ranę; jej komórki mogą ulec różnicowaniu i dać początek tkankom, organom, całym roślinom
tkanki roślinne lub zwierzęce hodowane in vitro, poza organizmem; komórki ludzkie hoduje się w celu wykorzystania ich np. do przeszczepów
Zadania
Oceń poniższe zdania i zaznacz odpowiedź Prawda lub Fałsz.
Prawda | Fałsz | |
Modyfikacje genetyczne pozwalają uzyskać rośliny odporne na szkodniki. | □ | □ |
Rośliny bawełny Bt zawierają w swoich komórkach gen pochodzący z bakterii. | □ | □ |
Badania potwierdziły, że rośliny GM przynoszą środowisku i człowiekowi więcej szkody niż pożytku. | □ | □ |
Modyfikowane ziemniaki posiadają gen pochodzący z wirusa wywołującego liściozwój. | □ | □ |
Polska jest wolna od roślin modyfikowanych genetycznie i pochodzącej z nich żywności. | □ | □ |
Oceń poprawność poniższych zdań i zaznacz odpowiedź Prawda lub Fałsz.
Prawda | Fałsz | |
Geny oporności wprowadzone do modyfikowanych roślin nie są w stanie przenikać do roślin dziko żyjących. | □ | □ |
Dzięki modyfikacjom genetycznym jest szansa uprawy bawełny w średnich szerokościach geograficznych. | □ | □ |
Rozprzestrzenianie się zmodyfikowanych roślin może mieć negatywny wpływ na bioróżnorodność. | □ | □ |
Stosowanie upraw GMO pozwala zwiększyć wydajność plonów. | □ | □ |