Topic: Why does an apple fall to the ground?

Supplementary material for use in lessons in the group of natural sciences (nature, biology, chemistry, geography, physics), additional classes, science clubs. It can serve as a resource for expanding knowledge, preparing students for science competitions.

Target group
Students of elementary school – physics

Core curriculum

Cele kształcenia – wymagania ogólne

1) Wykorzystanie pojęć i wielkości fizycznych do opisu zjawisk oraz wskazywanie ich przykładów w otaczającej rzeczywistości.

3) Planowanie i przeprowadzanie obserwacji lub doświadczeń oraz wnioskowanie na podstawie ich wyników.

4) Posługiwanie się informacjami pochodzącymi z analizy materiałów źródłowych, w tym tekstów popularnonaukowych.

Treści nauczania – wymagania szczegółowe

I. Wymagania przekrojowe. Uczeń:

1. wyodrębnia z tekstów, tabel, diagramów lub wykresów, rysunków schematycznych lub blokowych informacje kluczowe dla opisywanego zjawiska bądź problemu; ilustruje je w różnych postaciach;

3. rozróżnia pojęcia: obserwacja, pomiar, doświadczenie; przeprowadza wybrane obserwacje, pomiary i doświadczenia korzystając z ich opisów;

II. Ruch i siły. Uczeń:

15. posługuje się pojęciem masy jako miary bezwładności ciał; analizuje zachowanie się ciał na podstawie drugiej zasady dynamiki i stosuje do obliczeń związek między siłą i masą a przyspieszeniem;

16. opisuje spadek swobodny jako przykład ruchu jednostajnie przyspieszonego;

17. posługuje się pojęciem siły ciężkości; stosuje do obliczeń związek między siłą, masą i przyspieszeniem grawitacyjnym;

General aim of education

Students explain the concept of gravity and distinguish body weight from its weight.

Key competences

  • communication in foreign languages;

  • digital competence;

  • learning to learn.

Criteria for success
The student will learn:

  • explain what is common gravity;

  • discuss the importance of gravity on Earth;

  • explain what the state of weightlessness is;

  • to distinguish body weight from its weight.

Methods/techniques

  • expository

    • talk.

  • activating

    • discussion.

  • programmed

    • with computer;

    • with e‑textbook.

  • practical

    • exercices concerned.

Forms of work

  • individual activity;

  • activity in pairs;

  • activity in groups;

  • collective activity.

Teaching aids

  • e‑textbook;

  • notebook and crayons/felt‑tip pens;

  • interactive whiteboard, tablets/computers;

  • several items with different weights, but not too large, e.g. football, ping‑pong ball, matchbox, pencil, paper clip.

Lesson plan overview

Before classes

  • Students get acquainted with the content of the abstract. They prepare to work on the lesson in such a way to be able to summarize the material read in their own words and solve the tasks themselves.

Introduction

  • The teacher gives the topic, the goals of the lesson in a language understandable for the student, and the criteria of success.

Realization

  • The lesson instructs students to read the section „What is gravitation?” And explain what the strength of gravity is.

  • Students, working in pairs, conduct „Observation 1”.

  • Students share observations made during the observation and then formulate conclusions together. The teacher corrects possible mistakes.

  • The lecturer presents an interactive illustration and asks the pupils for other situations in which the force of gravity is revealed. Students discuss the importance of gravity on Earth.

  • Students read the „Mass and weight” section. They explain the difference between body weight and weight and define the concept of weightlessness.

  • Students perform interactive exercises No. 1‑3. They analyze correct solutions and justify selected answers.

Summary

  • Students independently solve interactive exercise No. 4.

Homework

  • Develop a lap book containing issues learned during the lesson and bring your work to the next class.

  • Listen to the abstract recording at home. Pay attention to pronunciation, accent and intonation. Learn to pronounce the words learned during the lesson.

DhgiDNbl2

The following terms and recordings will be used during this lesson

Terms

weight
weight
RfJy8UWUFvNyR
Nagranie dźwiękowe słówka

ciężar – siła, z jaką grawitacja oddziałuje na przedmiot o określonej masie

mass
mass
RH23d0DGYHNdh
Nagranie dźwiękowe słówka

masa – ilość substancji, z jakiej zbudowane jest dane ciało

gravitational force
gravitational force
Rlnkj9woW6oYz
Nagranie dźwiękowe słówka

siła grawitacji – siła, z jaką jedno ciało przyciąga drugie; im większa masa tego ciała, tym większa jest siła jego grawitacji

zero gravity
zero gravity
R1bXFK5qHeQaY
Nagranie dźwiękowe słówka

stan nieważkości – stan, w którym różne siły działające na ciało powodują, że to ciało mimo niezmienionej masy nie ma chwilowo ciężaru

Texts and recordings

RuPnPxjRaDtAx
nagranie dźwiękowe abstraktu

Why does an apple fall to the ground?

Hundreds of years ago, it was believed that the Earth is flat and if it was spherical humans living on the opposite side would fall off. In reality this does not happed because each body is acted upon by the gravitational force connected with gravity. It’s a force exerted by the Earth to attract all that’s on or near it.

Lets check whether gravity acts on all objects the same way. Perhaps items with a greater mass are attracted with greater force?

The gravitational force is exerted by each object – the Earth, but also the Moon and the Sun. The greater the body mass, the higher the gravity. The Moon is significantly smaller than the Earth – that’s why gravity there is six time weaker. Gravity allows us to live anywhere on Earth without the risk of anyone falling off. Owing to gravity, the Moon and artificial satellites also orbit the Earth.

Imagine preparing someone weighing 80 kg on Earth for the flight to the Moon. When the rocket enters space and engines are shut down, despite the effects of gravitational force the astronaut will be in a zero gravity. They no longer weigh anything despite their mass remaining the same. After landing on the Moon, if that person was to weight themselves, the scale would show a value six times lower than on Earth, despite their mass remaining the same. That’s because the gravitational force of the Moon is six times weaker than the Earth’s gravity.

Body mass constantly remains the same, but it’s weight changes. In certain conditions, the body may even weigh nothing despite having the same exact mass the entire time. Zero gravity also exists on spacecraft floating in Earth orbit at constant speed and with engines shut down.

  • The force with which one body attracts another is called the gravitational force.

  • All objects on Earth are affected by gravitational force.

  • Each object has a mass that never changes and does not depend on gravity.

  • The weight of a body depends on gravity rather than mass.