RyL61FbBBVpMt

Optics - summary

Source: licencja: CC 0.

Podsumowanie wiadomości z optyki

You will learn
  • consolidate the knowledge about optical phenomena,

  • how to explain optical phenomena.

Before you start, prepare short statements explaining the following concepts.

RD52m2kfYrZy21
wymowa w języku angielskim: ...
  1. Light sources.

  2. Umbra and penumbra.

  3. Reflection of lightreflection of lightReflection of light.

  4. Flat mirrormirrormirror.

  5. Concave mirror.

  6. Construction of images in a spherical mirror.

  7. Refraction of lightrefraction of lightRefraction of light.

  8. Lenses.

  9. Construction of images using lenses.

  10. Sight and eye defects.

  11. DispersiondispersionDispersion of light.

  12. Speed of light.

RHK1ieJC8Gjk91
wymowa w języku angielskim: ...

OpticsopticsOptics is a branch of physics that studies light and its interaction with matter. Geometrical optics - explains the optical phenomena assuming that light propagates in a straight line in an optically homogeneous mediumoptically homogeneous mediumoptically homogeneous medium. In optics, we often use the concept of an optical medium.

The optically homogeneous medium - a medium that has all chemical and physical properties constant in its entire volume, e.g. a glass lenslenslens. In such a medium the light propagates in a straight line with the same speed in all directions.

The optically inhomogeneous medium - a medium, whose properties in various points of its volume are different, e.g. air with changing temperature.

1. Light sources
R1Lpll1WfADQn1
wymowa w języku angielskim: ...

The sourcesourcesource of light is a body that emits light radiation in the visible light range.

We divide the light sources into natural and artificial ones.

Light sources can be:

  • Point source - here the light source has very small dimensions with respect to the distance from the illuminated object. In the case of a point source, we assume that light rays come from a single point.

  • Extended source - this means that its size is relatively large with respect to the distance to the illuminated object, e.g. the sun illuminating the Earth.

2. Umbra and penumbra
Rsnmh7hNXdecg
wymowa w języku angielskim: ...

In an optically homogeneous mediumoptically homogeneous mediumoptically homogeneous medium, light propagates in a straight line. The straight line along which the light travels is called a rayrayray of light.

Umbra (shadow) is an area where light rays, stopped by an opaque object, do not reach.

Penumbra is an area illuminated by part of the light emitted by the sourcesourcesource. Penumbra is created when the object is illuminated by an extended light source.

3. Reflection of light
RdesvjFQ8PHK1
nagranie abstraktu

The rayrayray of light falling on the boundary of two optical media is reflected. The angleangle angle of incidence of the light ray is equal to the angle of reflection. We measure these angles relative to a straight line perpendicular to the boundary of these media at the point of incidence. This line is called normal (perpendicular incidence).

Normal, incident ray and reflected ray lie in one plane.

4. Flat mirror
R1SgfDnBBLPcA1
wymowa w języku angielskim: ...

Flat mirrors are smooth reflecting surfaces. They are usually made of glass covered with a layer of aluminium or silver or other metal.

The beam of parallel light rays falling on the mirrormirrormirror is reflected, and the rays in the reflected beam still remain parallel to each other.

If the reflecting surface is rough, then the directions of the reflected rays become divergent.

An image created in a flat mirror is upright and virtual. The virtual image is created behind the mirror at the intersection of the reflected rays extended behind the mirror.

5. Concave mirror
RgLBfhvZM13WJ
wymowa w języku angielskim: ...

Spherical concave mirrormirrormirror is a mirror whose reflecting surface is the inner part of the sphere. A concave mirror can also be a segment of the paraboloid.

The optical system of the concave mirror consists of:

  • main optical axis - a straight line passing through the centre of the curvature of the mirror (C) and its vertex (V).

  • radius of curvature (R) - the radius of the sphere whose inner part is the reflecting surface of the mirror.

  • focal point of the mirror (F) - if light rays travel parallel to the optical axis of the mirror, after reflection they will intersect at the same point located on the optical axis called the focal point.

  • focal length (f) - is the distance between the focal point and the vertex of the mirror.

Relation between the focal length and the radius of curvature:

f=R2
6. Construction of images in a spherical mirror
RKnkIDEnulIcv
wymowa w języku angielskim: ...

To construct an image in a spherical mirrormirrormirror, at least two of the following light rays are needed.

  • Light rayrayray parallel to the optical axis, after reflection off the mirror passes through the focal point.

  • Light ray traveling through the centre of the curvature of the mirror, after reflection returns back on the same path.

  • Light ray passing through the focal point of the mirror, which after reflection becomes parallel to the optical axis. The image formed in a concave mirror can be magnified, the same size or reduced, real or virtual, upright or inverted.

7. Refraction of light
RyIh6ggmTmUlH1
wymowa w języku angielskim: ...

If the light ray reaches the boundary of two optically different media, its direction will change – this is refraction of lightrefraction of lightrefraction of light.

The angleangle angle between the direction of the incident rayrayray and the perpendicular to the boundary surface (normal) at the point of incidence is called the angle of incidence.

The angle of refraction is the angle between the perpendicular to the boundary surface (normal) at the point of refraction and the direction of the refracted ray.

The incident ray, perpendicular (normal) and the refracted ray lie in one plane.

The cause of the refraction phenomenon is the change in the speed of light propagation at the transition from one medium to another.

If the speed of light propagation in the first medium is greater than in the one to which the light passes, then the angle of incidence is greater than the angle of refraction.

If the speed of light propagation in the first medium is smaller than in the second medium, then the angleangle angle of incidence is smaller than the angle of refraction.

If the light falls perpendicular to the boundary of two media, then the direction of its path will not change (although the speed of its propagation in these media is different).

R1AxdkZcaMz2u
Na ilustracji interaktywnej przedstawione jest symbolicznie zjawisko załamania światła, czyli jeżeli promień świetlny trafia na granicę dwóch ośrodków optycznie różnych, następuje zmiana jego kierunku. Przyczyną zjawiska załamania jest zmiana prędkości rozchodzenia się światła przy przejściu z jednego ośrodka do drugiego. Narysowany jest bieg promienia świetlnego w ośrodku, w którym prędkość światła jest większa v z indeksem dolnym 1 oraz jego załamanie po przejściu do ośrodka, w którym prędkość światła jest mniejsza v z indeksem dolnym 2. Po prawej zapis v z indeksem dolnym 1 jest większe od v z indeksem dolnym 2. Granica między ośrodkami opisana boundary. Na środku narysowana linia pionowa przerywana opisana numerem 3. Strzałka symbolizująca bieg promienia padającego skierowana jest do dołu w prawo i opisana numerem 1. Kąt alfa między tą strzałką a linią pionową opisany angle of incidence. Strzałka symbolizująca bieg promienia odbitego skierowana do góry w prawo opisana numerem 2. Zaznaczony kąt alfa między tą strzałką a linią pionową. Strzałka symbolizująca bieg promienia załamanego skierowana jest do dołu w prawo i opisana refracted ray. Kąt beta między tą strzałką a linią pionową opisany angle of refraction. Na ilustracji widoczne są numery, a na nich podpisy. 1. incident ray {audio}, 2. reflected ray {audio}, 3. normal {audio}.
Refraction of light crossing the boundary between media which differs in the speed of light propagation
Source: GroMar, licencja: CC BY 3.0.
8. Lenses
R1WpCQqudCJSK1
wymowa w języku angielskim: ...

The lenslenslens is a transparent body bounded by spherical, parabolic or cylindrical surfaces.
Lenses can both converge and diverge light. Lenses are divided into converging and diverging.
Examples of lens applications: glasses, magnifier, optical microscope, telescope.

The optical system of the lens consists of:

  • Optical axis - a straight line passing through the centres of curvature of the surfaces from which the lens was created.

  • Focal point (F) - if light rays travel parallel to the optical axis of the lens, after passing through the lens they will intersect at the same point located on the optical axis called the focal point.

  • Focal length (f) - distance between the focal point and the centre of the lens.

9. Construction of images using lenses
RChDKueSRKkWZ1
wymowa w języku angielskim: ...

At least two of the following light rays are needed for the construction of an image produced using a converging lens:

  • Light rayrayray parallel to the optical axis - after passing through the lens it travels through the focal point.

  • Light ray passing through the focal point - after passing through the lens, it travels parallel to the optical axis.

  • Light ray passing through the centre of the lens - after passing through the lens it does not change direction (does not refract).

In the image construction in a diverging lens, two rays are used:

  • Light ray parallel to the optical axis - after passing through the lens its extension passes through the virtual focal point.

  • Light ray passing through the centre of the lens - after passing through the lens its direction (path) does not change.

The image formed in the converging lens can be magnified, the same size or reduced, real or virtual, upright or inverted. In diverging lenses, the resulting image is always upright, reduced and virtual.

10. Sight and eye defects
R1cWWVK3X1wXh1
wymowa w języku angielskim: ...

The basic sight organ is the eye in which the lenslenslens plays an important role. The rays of light after passing through the cornea fall on the converging lens, which creates a reduced, inverted and real image on the retina.

The human eye has the ability to accommodate, or the ability to match the eye to the distance in which the object being viewed is located. This is possible due to the lens's ability to change shape.

The minimum distance of good sight for a human eye with no eye defect is about 25 cm.

The most common eye defects are:

  • Short‑sightedness (myopia) is a defect associated with the refraction of lightrefraction of lightrefraction of light through the lens (too convex) or too long distance from the retina to the lens (elongated eyeball). The image of a distant object is formed in front of the retina and is interpreted by the brain as indistinct and blurred. Diverging lenses are used to correct this defect.

  • Long‑sightedness (hyperopia) is a defect associated with the refraction of light through the lens (too flattened) or too short distance from the retina to the lens (shortened eyeball). The image of a distant object is formed behind the retina and is interpreted by the brain as out of focus. Converging lenses are used to correct this defect.

11. Dispersion of light
R1ECxZQEmspMC1
wymowa w języku angielskim: ...

White light is a mixture of colours from violet to red. We can see these colours by passing a beam of white light through the prism.

The prism is a transparent solid (usually made of glass), which is a polyhedron with a triangle base.

Light passing through the prism is refracted twice, for the first time on the boundary between air and glass (at the entrance to the prism), for the second time on the glass‑air boundary (at the exit from the prism).

During the passage through the prism the highest deviation from the primary direction has violet light, and the smallest - red.

The phenomenon of light separation into colours is called dispersiondispersiondispersion.

12. Speed of light
R92SwpLKD3Sia
wymowa w języku angielskim: ...

Light in a vacuum travels at approximately 300000 kms.

In material media, the speed of light is smaller and different for various media, e.g. in water it is 225000 kms, and in ice 229000 kms.

Remember
RmEcB8RjCOeip1
nagranie abstraktu
  • Geometrical opticsopticsoptics a branch of physics that explains the optical phenomena assuming that light propagates in a straight line in an optically homogeneous mediumoptically homogeneous mediumoptically homogeneous medium.

Exercises

Rqlo5jCVC8x1J
Exercise 1
Wersja alternatywna ćwiczenia: Determine which sentences are true. Możliwe odpowiedzi: 1. In a homogeneous medium the light propagates in all directions in straight lines., 2. When light falls on the boundary of two media, it is reflected., 3. The image formed in the flat mirror is upright and virtual., 4. Concave mirrors are used in the headlights of cars., 5. Light refraction is a phenomenon that changes the direction of light when crossing the boundary of two optical media., 6. The phenomena of refraction and reflection are not related to each other., 7. The features of the image formed in converging lenses depend on the distance of the object from the lens., 8. Eye defects can be corrected by using diverging or converging lenses in the glasses., 9. White light is a mixture of colours., 10. The speed of light is the smallest speed with which we can send information.
zadanie
Source: GroMar, licencja: CC BY 3.0.
Exercise 2

Describe the laser light path through the prism. Is its dispersion observed? Explain.

Exercise 3

Explain in English the phenomena of light refraction.

ROkXr2Qs3PoLp
Exercise 4
Wersja alternatywna ćwiczenia: Indicate which pairs of expressions or words are translated correctly. Możliwe odpowiedzi: 1. ośrodek optycznie jednorodny - optically homogeneous medium, 2. optyka - optics, 3. załamanie światła - reflection of light, 4. odbicie światła - refraction of light, 5. źródło - source
zadanie
Source: GroMar, licencja: CC BY 3.0.
R1H4weybCNLDk1
Interaktywna gra, polegająca na łączeniu wyrazów w pary w ciągu jednej minuty. Czas zaczyna upływać wraz z rozpoczęciem gry. Jeden ruch to odkrywanie najpierw jednej potem drugiej karty z wyrazem. Każdy wyraz jest odczytywany. Kolejny ruch to odkrywanie trzeciej i czwartej karty. W ten sposób odsłuchasz wszystkie wyrazy. Nawigacja z poziomu klawiatury za pomocą strzałek, odsłuchiwanie wyrazów enterem lub spacją. Znajdź wszystkie pary wyrazów.
Source: Zespół autorski Politechniki Łódzkiej, licencja: CC BY 3.0.

Glossary

angle
angle

kąt

RTBA2Llw9eHXg1
wymowa w języku angielskim: angle
dispersion
dispersion

rozszczepienie

RcEsgwqHUf4vH1
wymowa w języku angielskim: dispersion
lens
lens

soczewka

RO858cx7pMtKY1
wymowa w języku angielskim: lens
mirror
mirror

lustro

RsQLwhV4ouFvV1
wymowa w języku angielskim: mirror
optically homogeneous medium
optically homogeneous medium

ośrodek optycznie jednorodny

Rr2qHhDPMDCCA1
wymowa w języku angielskim: optically homogeneous medium
optics
optics

optyka

R1eu7SmEvwADW1
wymowa w języku angielskim: optics
ray
ray

promień

Run7di95ro7wO1
wymowa w języku angielskim: ray
reflection of light
reflection of light

odbicie światła

R2CToDnuA38YT1
wymowa w języku angielskim: reflection of light
refraction of light
refraction of light

załamanie światła

RoAX4AoXZ43kj1
wymowa w języku angielskim: refraction of light
source
source

źródło

R12H8HXEd2CZ51
wymowa w języku angielskim: source

Keywords

optically homogeneous mediumoptically homogeneous mediumoptically homogeneous medium

opticsopticsoptics

reflection of lightreflection of lightreflection of light

refraction of lightrefraction of lightrefraction of light

sourcesourcesource