R1SI3r42jhkfA

Addition of the fractions with different denominators

Source: licencja: CC 0.

Dodawanie ułamków o różnych mianownikach

Learning objectives

You will discover the adding the fractions and the mixed numbers whose fractions have different denominators.

Learning effect

  • You describe the method of adding the fractions and the mixed numbers whose fractions have different denominators.

  • You reduce and expand the common fractions.

  • You convert the common fractions to common denominator.

  • You use English to describe the method of adding the fractions and the mixed numbers whose fractions have different denominators.

R16gapfAiZuMu1
nagranie abstraktu

Today you are going to find out the method of adding the fractions and mixed numbers with different denominatorsdifferent denominatorsdifferent denominators.

RXJAo8MnNGNqo1
nagranie abstraktu

Put the board of the game made of the A4 size of paper in front of you. Prepare the card with numbers from 2 to 9.

R2MgXfwm81JKI1
nagranie abstraktu

Draw two cards and put them in the empty places of the board to get two fractions. Give the number which can be the common denominator of these two fractions. Consider if you can think of any smaller common denominator. Then draw the other cards, make subsequent fractions and repeat the activity.

RgPBCzkaOi8ly
Prezentacja multimedialna prezentuje dodawanie ułamków zwykłych o różnych mianownikach. Instrukcja obsługi z poziomu klawiatury: 1. Uruchomienie aplikacji - ENTER, 2. Na każdym ze slajdów czytany jest automatycznie tekst alternatywny po polsku, 3. Przy pierwszym uruchomieniu na pierwszym slajdzie, czytanie tekstu po angielsku - TAB, 4. Przejście między slajdami: do następnego slajdu - TAB, do poprzedniego slajdu - TAB + SHIFT, 5. Przejście do czytania napisu po angielsku - strzałka w górę + strzałka w dół (czyta tekst po angielsku widoczny na slajdzie).
Adding the common fractions with different denominators
Source: GroMar, licencja: CC BY 3.0.
R1K5bTzDXA8mk1
nagranie abstraktu

Watch the slideshow to discover the method of adding the common fractions with different denominatorsdifferent denominatorsdifferent denominators.

RPSwmfnffx72x1
nagranie abstraktu

Look carefully at the example: 14+13. Illustrate the addition to the drawing. Consider if we can present the fractions 14 and 13 in a different way?

The fractions can be converted to the same denominator for example 12. Analyse the following example:

14+13=312+412=712.
R166wd84HxpWv1
nagranie abstraktu

Conclusion:

When we add the fractions with different denominatorsdifferent denominatorsdifferent denominators we have to convert them to the same denominatorssame denominatorssame denominators first by reducing or expanding the fraction. Next, we should add them in the same way as the fractions with the same denominators.

Task 1
R16ReoaBTcH8B1
nagranie abstraktu

Add the fractions with different denominators:

a) 34+12

b) 310+25

c) 712+34

d) 38+24

e) 25+715

Notice, that:

RuFHVVinhYrHp1
nagranie abstraktu

One of the ways of looking for the same denominator is writing down the subsequent multiple of the bigger denominator. We can always expand the first fraction by the denominator of second fraction and the second one by the denominator of the first one. The smallest common denominator makes the calculation easier. 

Task 2
ROyYl9gKDFLUc1
nagranie abstraktu

Add mixed numbers whose fractions have different denominatorsdifferent denominatorsdifferent denominators:

a) 214+323

b) 637+526

c) 1710+414

d) 835+729

e) 328+11712

RfmFizh92DQmR1
nagranie abstraktu

Conclusion:

When we add the mixed numbers whose fraction parts have different denominators we should convert the fractions to the same denominator first. Then we calculate the sum of the integers and the sum of the fractions We should remember to write the result in the simplest form after excluding the  integers and reducing the fraction.

Task 3

An extra task:

Watch the fractions and the results of the addition.

12+13=56

13+14=712

14+15=920

Write the results as in the example without converting the fractions to the same denominator:

a) 17+16

b) 15+16

c) 17+18

d) 17+14

R1clzoedjd1nd1
nagranie abstraktu

Remember:

  • When we add the fractions with different denominators we have to convert them to the same denominatorssame denominatorssame denominators first by reducing or expanding the fraction. Next, we should add them in the same way as the fractions with the same denominators.

  • When we add the mixed numbers whose fraction parts have different denominators we should convert the fractions to the same denominator first. Then we calculate the sum of the integers and the sum of the fractions We should remember to write the result in the simplest form after excluding the integers and reducing the fraction.

Check what you have learned by doing the following tasks.

Exercises

Exercise 1
R1c9p3iB2TyRp
Wersja alternatywna ćwiczenia: During first 115 of the lesson the teacher welcomes the students and check the presence. Checking homework takes her another 29 of the lesson. 445 of the lesson the teacher gives new homework. Calculate what part of the lesson do these activities take altogether ? Możliwe odpowiedzi: 1. 1745, 2. 745, 3. 769, 4. 1445
zadanie
Source: GroMar, licencja: CC BY 3.0.
Exercise 2

Three tenth of the seats the cinema were taken by the men, two third by the women. What part of the seats was taken by the men and the women?

Exercise 3

Convert the fractions to the common denominator and reduce them to the simplest form:

a) 223+312

b) 334+115

c) 29+56

d) 35+47

Describe the method of converting the fraction to the common denominator in English.

Exercise 4
Rov2CjeZoInUe
Wersja alternatywna ćwiczenia: Indicate which pairs of expressions or words are translated correctly. Możliwe odpowiedzi: 1. ułamek nieskracalny - irreducible fraction, 2. wspólny mianownik - common fraction, 3. liczba mieszana - mixed number, 4. różne mianowniki - different denominators, 5. dodawanie ułamków - expanding the fractions, 6. skracanie ułamków - addition of the fractions
zadanie
Source: GroMar, licencja: CC BY 3.0.
R1TyBywBK6H4r1
Interaktywna gra, polegająca na łączeniu wyrazów w pary w ciągu jednej minuty. Czas zaczyna upływać wraz z rozpoczęciem gry. Jeden ruch to odkrywanie najpierw jednej potem drugiej karty z wyrazem. Każdy wyraz jest odczytywany. Kolejny ruch to odkrywanie trzeciej i czwartej karty. W ten sposób odsłuchasz wszystkie wyrazy. Nawigacja z poziomu klawiatury za pomocą strzałek, odsłuchiwanie wyrazów enterem lub spacją. Znajdź wszystkie pary wyrazów.
Source: Zespół autorski Politechniki Łódzkiej, licencja: CC BY 3.0.

Glossary

irreducible fraction
irreducible fraction

ułamek nieskracalny

R1JkmnWtSZ9sY1
wymowa w języku angielskim: irreducible fraction
common fraction
common fraction

wspólny mianownik

R1Qf7Cav6mfih1
wymowa w języku angielskim: common fraction
mixed number
mixed number

liczba mieszana

RqWTJvXrpAhP41
wymowa w języku angielskim: infrasound
different denominators
different denominators

różne mianowniki

RTlwSkZ5jgarZ1
wymowa w języku angielskim: different denominators
addition of the fractions
addition of the fractions

dodawanie ułamków

R6vSmwY8tfMU01
wymowa w języku angielskim: addition of the fractions
addition of the mixed numbers
addition of the mixed numbers

dodawanie liczb mieszanych

RR8Tt1qWgv1Dl1
wymowa w języku angielskim: addition of the mixed numbers
expanding the fractions
expanding the fractions

rozszerzanie ułamków

R1CwxvzVd9rxF1
wymowa w języku angielskim: expanding the fractions
reducing the fractions
reducing the fractions

skracanie ułamków

R1Y6UC53vV9GJ1
wymowa w języku angielskim: reducing the fractions
same denominators
same denominators

jednakowe mianowniki

R18Knqx6S1iPq1
wymowa w języku angielskim: same denominators

Keywords

irreducible fractionirreducible fractionirreducible fraction

common fractioncommon fractioncommon fraction

mixed numbermixed numbermixed number

different denominatorsdifferent denominatorsdifferent denominators

addition of the fractionsaddition of the fractionsaddition of the fractions