R1SI3r42jhkfA

Classical definition of probability. Properties of probability. Calculating probability of events

Source: licencja: CC 0.

Klasyczna definicja prawdopodobieństwa. Własności prawdopodobieństwa. Obliczanie prawdopodobieństw zdarzeń losowych

Learning objectives

  • You will learn concepts related with calculating probability and you will learn properties of probability.

Learning effect

  • Learning concepts related with calculating probability and learning properties of probability.

Prepare information for the following subjects:

R1UMCbFUgGcYk1
nagranie abstraktu

I. Experiments, elementary events, sample spacesample spacesample space, operations of events.
II. Identifying probabilityprobabilityprobability.
III. Properties of probability.
IV. Classical probability.

See if information you prepared are among the following one:

I. Experiments, elementary events, sample space, operations of events

RnNTpZhdH05G81
nagranie abstraktu
  • An experimentexperimentexperiment – a repeatable experiment whose outcome we cannot predict.

  • An elementary eventelementary eventelementary event – an outcome of the experiment.

  • Sample space – a set of all elementary events, marked with the letter Ω (omega).

  • complementary event to the event Acomplementary event to the event Acomplementary event to the event A – an event A’ to which are favourable all elementary events that are not favourable to the A event.

II. Identifying probability

R1MOALd2fTMaO1
nagranie abstraktu
  • Probability defined on a finite sample spacesample spacesample space Ω is such function P that assigns to each event A, A ⊂ Ω a real number P(A) in such a way that:

    • (A1) P(A) ≥ 0

    • (A2) P(Ω) = 1

    • (A3) if A, B ⊂ Ω i A ∩ B = ∅, then P(A ∪ B) = P(A) + P(B).

  • A pair (Ω, P) – probability space.

III. Properties of probability

R1Nt0erYdLuYs1
nagranie abstraktu

Properties of probabilityprobabilityprobability:

  • P(∅) = 0,

  • if A ⊂ B, then P(A) ≤ P(B),

  • P(A) ≤ 1,

  • P(A') = 1 - P(A),

  • P(A ∪ B) = P(A) + P(B) - P(A ∩ B),

  • If events AIndeks dolny 1, AIndeks dolny 2, …, AIndeks dolny n ⊂ Ω are mutually exclusive then P(AIndeks dolny 1 ∪ AIndeks dolny 2 ∪ ... ∪ AIndeks dolny n) = P(AIndeks dolny 1) + P(AIndeks dolny 2) + ... P(AIndeks dolny n).

IV. Classical probability

R1OWaGG9WzyWB1
nagranie abstraktu

Classical probabilityprobabilityprobability definition.

If the sample space Ω is finite and all elementary events are equally probable and A is any event in this space, then:

P(A)=AΩ
Task 1
R10kGho842lTY1
nagranie abstraktu

Open the interactive illustration, that describes how to calculate probability of an event and watch it carefully.

We calculate the probability of an event A where after rolling a symmetric, six‑sided dice and a flip a symmetric coin, we obtain an even number on the dice and heads.

RVhxHJMuI9bFc
Ilustracja interaktywna przedstawia monetę jedno złotową oznaczoną numerem 1 oraz symetryczną sześcienną kostkę do gry oznaczoną numerem 2. Na numerach widoczne są podpisy. 1. In flipping the coin we can obtain heads O or tails R. {audio}, 2. In rolling the dice we can obtain numbers: 1, 2, 3, 4, 5, 6. {audio}.
Probability of an event
Source: GroMar, licencja: CC BY 3.0.

We roll the dice and flip the coin and get a set of elementary events:

  • Ω = {O,1, O,2, O,3, O,4, O,5, O,6, R,1, R,2, R,3, R,4, R,5, R,6}
    |Ω| = 12

  • A – event A is an event where we can heads an an even number
    |A| = 3

Probability of the event A: P(A)=312=14=0,25

Probability of the event A is 0,25.

Task 2
R11BTQ5i4jnED1
nagranie abstraktu

We flip a symmetric coin three times.

a. Write all elements of the sample spacesample spacesample space Ω.
b. Write all elementary events favourable to events A and B if:

  • A - the event where we get at least one heads,

  • B - the event where we get heads three times or tails three times.

Give number of elementary events favourable to events A and B.

Task 3
Rpn80p5Edyqo81
nagranie abstraktu

In a certain experimentexperimentexperiment, the set of elementary events is:
Ω = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10}.

The set of elementary events favourable to events A, B and C is defined as follows:
A = { x: x ϵ Ω ʌ x ≤ 4},
B = { x: x ϵ Ω ʌ 3 ≤ x ≤ 5},
C = { x: x ϵ Ω ʌ 4 ≤ x ≤ 8}.

Write all elementary events favourable to events:
A, B, C, A ∪ B, A ∩ C, C’.

Task 4
RSCtKhRBMN0VX1
nagranie abstraktu

A random letter was chosen from letters of the word PRAWDOPODOBIEŃSTWO. Calculate probabilityprobabilityprobability that it is letter P or O.

Task 5
R1Te5CXKWfqIc1
nagranie abstraktu

Knowing that P(A)P(A')=5, calculate PA and PA'.

Task 6

An extra task:

Calculate P(A ∪ B) and P(A’ ∩ B’), knowing that

  • A ⊂ Ω and B ⊂ Ω are mutually exclusive events,

  • P(A') = 23,

  • P(B') = 12.

R1LS57EyvIi3g1
nagranie abstraktu
  • An experimentexperimentexperiment – a repeatable experiment whose outcome we cannot predict.

  • An elementary eventelementary eventelementary event – an outcome of the experiment.

  • Sample space – a set of all elementary events, marked with the letter Ω (omega).

  • complementary event to the event Acomplementary event to the event Acomplementary event to the event A – an event A’ to which are favourable all elementary events that are not favourable to the A event.

  • Probability defined on a finite sample spacesample spacesample space Ω is such function P that assigns to each event A, A ⊂ Ω a real number P(A) in such a way that:

    • (A1) P(A) ≥ 0,

    • (A2) P(Ω) = 1,

    • (A3) if A, B ⊂ Ω i A ∩ B = ∅, then P(A ∪ B) = P(A) + P(B).

  • Classical probabilityprobabilityprobability definition. If the sample space Ω is finite and all elementary events are equally probable and A is any event in this space, then: P(A)=AΩ.

Exercises

R1asJtrtNVDIk
Exercise 1
Wersja alternatywna ćwiczenia: We roll a symmetric, six-sided dice twice. Probability of getting the same number both times is equal to: Możliwe odpowiedzi: 1. 136, 2. 16, 3. 12, 4. 36
zadanie
Source: GroMar, licencja: CC BY 3.0.
Exercise 2

We know about the A and B events that  A ⊂ Ω and B ⊂ Ω and also P(A ∪ B) = 0,5 and P(A) = P(A ∩ B) = 13. Calculate P(B) i P(B – A).

Exercise 3

We draw one number from a set of two‑digit numbers. Calculate the probability that this number can be divided by 2 or by 3. Write the solution and answer in English.

RPQt1YjJLLwyo
Exercise 4
Wersja alternatywna ćwiczenia: Indicate which pairs of expressions or words are translated correctly. Możliwe odpowiedzi: 1. prawdopodobieństwo - probability, 2. doświadczenia losowe - experiment, 3. zdarzenie elementarne - elementary event, 4. przestrzeń probabilistyczna - elementary event, 5. doświadczenia losowe - probability
zadanie
Source: GroMar, licencja: CC BY 3.0.
Rg8grqNkHPpJZ1
Interaktywna gra, polegająca na łączeniu wyrazów w pary w ciągu jednej minuty. Czas zaczyna upływać wraz z rozpoczęciem gry. Jeden ruch to odkrywanie najpierw jednej potem drugiej karty z wyrazem. Każdy wyraz jest odczytywany. Kolejny ruch to odkrywanie trzeciej i czwartej karty. W ten sposób odsłuchasz wszystkie wyrazy. Nawigacja z poziomu klawiatury za pomocą strzałek, odsłuchiwanie wyrazów enterem lub spacją. Znajdź wszystkie pary wyrazów.
Source: Zespół autorski Politechniki Łódzkiej, licencja: CC BY 3.0.

Glossary

complementary event to the event A
complementary event to the event A

zdarzenie przeciwne do zdarzenia A

RMuXU0ZPVQ0jD1
wymowa w języku angielskim: complementary event to the event A
elementary event
elementary event

zdarzenie elementarne

RjP1WCO0VPFra1
wymowa w języku angielskim: elementary event
experiment
experiment

doświadczenia losowe

RP0NfYyu1kMVn1
wymowa w języku angielskim: experiment
probability
probability

prawdopodobieństwo

Rss5VGVDwNErk1
wymowa w języku angielskim: probability
sample space
sample space

przestrzeń probabilistyczna

R7uAQoIiR9Hkt1
wymowa w języku angielskim: sample space

Keywords

elementary eventelementary eventelementary event

experimentexperimentexperiment

sample spacesample spacesample space