RyL61FbBBVpMt

Determining the period and frequency of vibration of the mathematical pendulum and the weight on the spring

Source: licencja: CC 0.

Wyznaczanie okresu i częstotliwości drgań wahadła matematycznego i ciężarka na sprężynie

You will learn
  • measure the period of vibration of the mathematical pendulum and the weight on the spring,

  • determine the factors affecting the measurement uncertainty and the ways to reduce this uncertainty,

  • study what physical quantities does the vibration periodvibration periodvibration period of the mathematical pendulum and the weight on the spring depend on.

R1DIN7lM5rwV6
nagranie abstraktu

Answer the following questions.

  • What is the mathematical pendulummathematical pendulummathematical pendulum?

  • What and how does the period of vibration of the mathematical pendulum depend on?

  • What is the springspringspring pendulum?

  • What and how does the period of vibrations of the weightweightweight on the springspringspring depend on?

Experiment
Experiment 1
Research problem
R16hy39rBEpCD1
nagranie abstraktu

Analysis of the dependence of the vibration periodvibration periodvibration period of a mathematical pendulummathematical pendulummathematical pendulum on the length of the threadthreadthread.

Hypothesis
R1HOFYmSGm0rs1
nagranie abstraktu

The period of vibration of the mathematical pendulum is proportional to l.

You will need
RD0Ode5hcvYGO
nagranie abstraktu

You can use the following things.

Ra3tI90zYyIVz1
Prezentacja slajdów – co jest potrzebne do wykonania doświadczenia. Instrukcja obsługi z poziomu klawiatury: 1. Uruchomienie aplikacji - ENTER, 2. Na każdym ze slajdów czytany jest automatycznie tekst alternatywny po polsku, 3. Przy pierwszym uruchomieniu na pierwszym slajdzie, czytanie tekstu po angielsku - TAB, 4. Przejście między slajdami: do następnego slajdu - TAB, do poprzedniego slajdu - TAB + SHIFT, 5. Przejście do czytania napisu po angielsku - strzałka w górę + strzałka w dół (czyta tekst po angielsku widoczny na slajdzie).
Source: GroMar, licencja: CC BY 3.0.
Instruction
RFsMP13cDgRfT
nagranie abstraktu

1. Build a mathematical pendulummathematical pendulummathematical pendulum.

2. Determine the specified length l of the mathematical pendulum threadthreadthread.

3. Measure the time needed to complete n > 1 (for example n = 5) full vibration of the mathematical pendulum. It will be easier to read the right time if you use the video recording on your mobile phone.

4. Repeat steps 2 and 3 several times to eliminate the gross errorgross errorgross error.

5. Repeat the measurements for 15 different lengths of the mathematical pendulum between 20 cm and 200 cm.

Note:

R1NV0QMnUo3YA1
nagranie abstraktu

While making the measurements, make sure that the amplitude of the mathematical pendulum oscillation is not too high.

A suggested measurement table:

No.

Thread length l [cm]

Number of vibrations n

Vibration time t [s]

Vibration period T [s]

Summary

Processing of the results:

Rk24scCM3DESz1
nagranie abstraktu

1. For each measurement, determine the period of vibration.

2. Make a graph of the dependence between the vibration periodvibration periodvibration period T and the length l of the mathematical pendulummathematical pendulummathematical pendulum thread.

3. Based on the obtained graph, answer the question: Is the research hypothesis confirmed by the graph?

4. Present the possible sources of measurement uncertainty which occur during the experiment.

5. Compare the experimentally determined period with the theoretical formula:

T=2πlg

where:
T - vibration period [s],
l - thread length [m],
g - gravitational acceleration 10 ms2.

Experiment
Experiment 2
Research problem
RenEtjsPIF8rs1
nagranie abstraktu

Investigation of the dependence between the vibrations period of the weightweightweight suspended on the springspringspring and the mass of the weight.

Hypothesis
Rt6mT42XrntkO
nagranie abstraktu

The vibration periodvibration periodvibration period of the weight on the springspringspring is proportional to m.

Instruction
RKHEsFym6lTPt1
nagranie abstraktu

1. Build a spring pendulum. To do this, hang a spring on the support standsupport standsupport stand and then attach various weights.

RCl5Y1ODCJHRe1
Source: GroMar, licencja: CC BY 3.0.

2. Attach a weightweightweight of mass m on the spring.

3. Measure the time needed to complete n the full vibrations of the weight on the spring.

4. Repeat steps 2 and 3 several times to eliminate the gross errorgross errorgross error.

5. Repeat the measurements for 10 different weight masses on the spring from 20 g to 500 g.

Proposed measurement table:

No.

Body weight [m]

Number of vibrations n

Vibration time t [s]

Vibration period T [s]

Summary

Processing of the results:

RtynLy1MyJIwA
nagranie abstraktu

1. For each measurement, determine the period of vibration.

2. Make a graph of the dependence between the vibration periodvibration periodvibration period T and the length l of the mathematical pendulummathematical pendulummathematical pendulum thread.

3. Based on the obtained graph, answer the question: Is the research hypothesis confirmed by the graph?

4. Present the possible sources of measurement uncertainty which occur during the experiment.

5. Compare the experimentally determined period with the theoretical formula:

T=2πmk

where:
T - vibration period [s],
m - body weight [kg],
k - spring elasticity coefficient [Nkg].

You can determine the coefficient k using the dependence of the spring extension value on the mass of the weight suspended at the end of the spring:

k=|Fx|=|mgx|

where:
F - force of gravity [N],
k - spring elasticity coefficient [Nkg],
m - body weight [kg],
g - gravitational acceleration 10 ms2,
x - displacement from the equilibrium position [m].

Summary

Mathematical pendulum
RMRDXAyZ5TOxe
nagranie abstraktu

The conclusions from the measurements are following:

  • the period of vibration of the mathematical pendulum depends on its length,

  • longer duration of vibration corresponds to a longer length of the mathematical pendulum,

  • when the length of the mathematical pendulum thread increases by n times, the period of vibration will increase n, e.g. when the thread length is increased by four times, the vibration period will increase only two times.

WeightweightWeight on the spring
RmFVR67D7lkeD1
nagranie abstraktu

The conclusions from the measurements are following:

  • the period of vibrations of the weight on the springspringspring depends on its mass,

  • greater mass corresponds to a higher value of the vibration periodvibration periodvibration period

  • when the mass of weights increases four times, the period of vibration will increase twice (this effect is possible if the mass of the spring is much smaller than the mass of the weight suspended on it).

Theoretical formulas
R1bYKK8wRACl5
nagranie abstraktu

Both experiences clearly confirm the validity of theoretical formulas for the period of vibration of the mathematical pendulum and the weight on the spring.

The dependence of the period of vibration of the mathematical pendulum on its length is expressed by the formula:

T=2πlg

where:
T - vibration period [s],
l - thread length [m],
g - gravitational acceleration 10 ms2.

The dependence of the period of vibration of the weight suspended on the spring from its mass is expressed by the formula:

T=2πmk

where:
T - vibration period [s],
m - body weight [kg],
k - spring elasticity coefficient [Nkg].

Exercises

R1BDEMXYfn5X0
Exercise 1
Wersja alternatywna ćwiczenia: Determine which sentence is true. Możliwe odpowiedzi: 1. The vibration period of a mathematical pendulum is directly proportional to the length of the pendulum thread., 2. The vibration period of a mathematical pendulum of the same length would be different on the Mars and on the Earth., 3. Two identical springs were prepared. The weight was attached to the first spring and was set in the vibrating motion. Next, the second spring was serially attached to the first one. Then the period of vibrations of the weight on the spring increased., 4. With the help of the weight suspended on the spring, the value of the gravitational acceleration g can be determined.
Exercise 2

For one pendulum the vibration period is 1 second. Calculate how much you should shorten the length of the mathematical pendulum to make the period of its vibration equal 0,5 seconds.

Exercise 3

Write in English how you can determine the gravitational accelerationgravitational accelerationgravitational acceleration using the mathematical pendulum.

Rf5XiTLLTIhFS
Exercise 4
Wersja alternatywna ćwiczenia: Indicate which pairs of expressions or words are translated correctly. Możliwe odpowiedzi: 1. wahadło matematyczne - mathematical pendulum, 2. ciężarek - weight, 3. sprężyna - spring, 4. okres drgań - vibration period, 5. statyw - thread, 6. nić - weight
zadanie
Source: GroMar, licencja: CC BY 3.0.
R1UhR1aQhMEQp1
Interaktywna gra, polegająca na łączeniu wyrazów w pary w ciągu jednej minuty. Czas zaczyna upływać wraz z rozpoczęciem gry. Jeden ruch to odkrywanie najpierw jednej potem drugiej karty z wyrazem. Każdy wyraz jest odczytywany. Kolejny ruch to odkrywanie trzeciej i czwartej karty. W ten sposób odsłuchasz wszystkie wyrazy. Nawigacja z poziomu klawiatury za pomocą strzałek, odsłuchiwanie wyrazów enterem lub spacją. Znajdź wszystkie pary wyrazów.
Source: Zespół autorski Politechniki Łódzkiej, licencja: CC BY 3.0.

Glossary

mathematical pendulum
mathematical pendulum

wahadło matematyczne

R1DkE23mpLXCf1
wymowa w języku angielskim: mathematical pendulum
weight
weight

ciężarek

RGBi3Q2FVEr4B1
wymowa w języku angielskim: weight
spring
spring

sprężyna

R1X8xvTHyn9bY1
wymowa w języku angielskim: spring
vibration period
vibration period

okres drgań

R1db0Ew7R9zce1
wymowa w języku angielskim: vibration period
frequency of vibrations
frequency of vibrations

częstotliwość drgań

Ret3QpxGxC9Yq
wymowa w języku angielskim: frequency of vibrations
gravitational acceleration
gravitational acceleration

przyspieszenie ziemskie

R2UW39ftfFkZA1
wymowa w języku angielskim: gravitational acceleration
gross error
gross error

błąd gruby

R11odnlurTjkU1
wymowa w języku angielskim: gross error
support stand
support stand

statyw

R3UhMSr9BKRoA1
wymowa w języku angielskim: support stand
confirm
confirm

potwierdzić

R7BIA617OzLHs1
wymowa w języku angielskim: confirm
thread
thread

nić

R1Gcbzyf9EuW21
wymowa w języku angielskim: thread

Keywords

mathematical pendulummathematical pendulummathematical pendulum

weightweightweight

springspringspring

vibration periodvibration periodvibration period

frequency of vibrationsfrequency of vibrationsfrequency of vibrations