The power of number a, with a natural exponent (n > 1) is called a product of n elements, each being equal to a.
We write it down as:
Number a is called the base of the powerbase of the powerbase of the power, number n – the exponent of the powerexponent of the powerexponent of the power. Moreover, we assume that: for .
Using the definition, calculate values of powers.
Task 2
Calculate.
a)
b)
c)
Task 3
Calculate the values of powers. Think what determines the sign of the result of the exponentiation.
If we raise a positive number to the power with a natural exponent, we obtain a positive number.
If we raise a negative number to the power with a natural, even exponent, we obtain a positive number.
If we raise a negative number to the power with a natural, odd exponent, we obtain a negative number.
Use the information to do the tasks.
R10GU9YlQKWRS
Exercise 1
Wstaw znak większości, mniejszości lub równości.
Pierwszy przykład. 3 do potęgi drugiej [tutaj uzupełnij] 2 do potęgi trzeciej.
Drugi przykład. 1 do potęgi drugiej [tutaj uzupełnij] w nawiasie okrągłym minus 1, za nawiasem do potęgi drugiej.
Trzeci przykład. minus 3 do potęgi trzeciej [tutaj uzupełnij] 3 do potęgi trzeciej.
Czwarty przykład. 4 do potęgi trzeciej [tutaj uzupełnij] w nawiasie okrągłym minus 4, za nawiasem do potęgi trzeciej.
Piąty przykład. minus 1 do potęgi piątej [tutaj uzupełnij] nawiasie okrągłym minus 1, za nawiasem do potęgi piątej.
Szósty przykład. minus 3 do potęgi drugiej [tutaj uzupełnij] minus w nawiasie okrągłym minus 2, za nawiasem do potęgi drugiej.
Wstaw znak większości, mniejszości lub równości.
Pierwszy przykład. 3 do potęgi drugiej [tutaj uzupełnij] 2 do potęgi trzeciej.
Drugi przykład. 1 do potęgi drugiej [tutaj uzupełnij] w nawiasie okrągłym minus 1, za nawiasem do potęgi drugiej.
Trzeci przykład. minus 3 do potęgi trzeciej [tutaj uzupełnij] 3 do potęgi trzeciej.
Czwarty przykład. 4 do potęgi trzeciej [tutaj uzupełnij] w nawiasie okrągłym minus 4, za nawiasem do potęgi trzeciej.
Piąty przykład. minus 1 do potęgi piątej [tutaj uzupełnij] nawiasie okrągłym minus 1, za nawiasem do potęgi piątej.
Szósty przykład. minus 3 do potęgi drugiej [tutaj uzupełnij] minus w nawiasie okrągłym minus 2, za nawiasem do potęgi drugiej.
Wersja alternatywna ćwiczenia: Arrange the numbers from the smallest one to the greatest one. Elementy do uszeregowania: 1. , 2. , 3. , 4. , 5. , 6. , 7. , 8.
Wersja alternatywna ćwiczenia: Arrange the numbers from the smallest one to the greatest one. Elementy do uszeregowania: 1. , 2. , 3. , 4. , 5. , 6. , 7. , 8.
Arrange the numbers from the smallest one to the greatest one.
Task 4
Your task is to match the powers and their properties in pairs.
RsRWMY7Ydnf0N1
Geogebra aplet - Potęgi liczby 2, 3, 5. Galeria z opisami alternatywnymi poniżej.
Geogebra aplet - Potęgi liczby 2, 3, 5. Galeria z opisami alternatywnymi poniżej.
Rysunek przedstawia umieszczone w różnych częściach ekranu prostokąt i kwadraty. Wewnątrz figur znajdują się potęgi liczby 2 - dwa do pierwszej, dwa do drugiej ….dwa do dziesiątej oraz liczby: dwa, cztery , osiem, szesnaście, trzydzieści dwa, sześćdziesiąt cztery, sto dwadzieścia osiem, dwieście pięćdziesiąt sześć, pięćset dwanaście, tysiąc dwadzieścia cztery.
Source: GroMar, licencja: CC BY 3.0.
RfHaZLdNnxk9k1
Rysunek przedstawia umieszczone w różnych częściach ekranu prostokąt i kwadraty. Wewnątrz figur znajdują się potęgi liczby 2 - dwa do pierwszej, dwa do drugiej ….dwa do dziesiątej oraz liczby: dwa, cztery , osiem, szesnaście, trzydzieści dwa, sześćdziesiąt cztery, sto dwadzieścia osiem, dwieście pięćdziesiąt sześć, pięćset dwanaście, tysiąc dwadzieścia cztery. Wyróznione są liczby dwa do potęgi drugiej i 4 oraz dwa do potęgi piątej i trzydzieści dwa.
Source: GroMar, licencja: CC BY 3.0.
Task 5
An extra task:
Without performing the actual calculations, determine if the result is a positive or negative number.
a)
b)
c)
Do the revision exercises.
Exercises
RX4AUYLAnbdMk
Exercise 3
Wersja alternatywna ćwiczenia: Determine which sentence is true. Możliwe odpowiedzi: 1. The sum of the numbers and is a positive number., 2. The sum of the numbers and is a positive number., 3. The cube of any number is always greater than the square of the same number., 4. The cube of any number greater than 1 is always greater than the square of the same number., 5. The numbers 5 and -5 raised to the same power are equal., 6. The numbers 3 and -3 raised to the same even power are equal.
Wersja alternatywna ćwiczenia: Determine which sentence is true. Możliwe odpowiedzi: 1. The sum of the numbers and is a positive number., 2. The sum of the numbers and is a positive number., 3. The cube of any number is always greater than the square of the same number., 4. The cube of any number greater than 1 is always greater than the square of the same number., 5. The numbers 5 and -5 raised to the same power are equal., 6. The numbers 3 and -3 raised to the same even power are equal.
Determine which sentence is true.
The sum of the numbers and is a positive number.
The sum of the numbers and is a positive number.
The cube of any number is always greater than the square of the same number.
The cube of any number greater than 1 is always greater than the square of the same number.
The numbers 5 and -5 raised to the same power are equal.
The numbers 3 and -3 raised to the same even power are equal.
zadanie
Source: GroMar, licencja: CC BY 3.0.
Exercise 4
Calculate.
a)
b)
c)
d)
e)
f)
a)
b)
c)
d)
e)
f)
Exercise 5
Calculate the consecutive 11 powers of number 2, starting with the exponent 0. Describe the solution in English.
R1ZyqhQ4OYLrZ
Exercise 6
Wersja alternatywna ćwiczenia: Indicate which pairs of expressions or words are translated correctly. Możliwe odpowiedzi: 1. podstawa potęgi - the base of the power, 2. wykładnik potęgi - the exponent of the power, 3. potęga o wykładniku naturalnym - power with the natural exponent, 4. kwadrat liczby - the cube of the number, 5. sześcian liczby - the square of the number
Wersja alternatywna ćwiczenia: Indicate which pairs of expressions or words are translated correctly. Możliwe odpowiedzi: 1. podstawa potęgi - the base of the power, 2. wykładnik potęgi - the exponent of the power, 3. potęga o wykładniku naturalnym - power with the natural exponent, 4. kwadrat liczby - the cube of the number, 5. sześcian liczby - the square of the number
Indicate which pairs of expressions or words are translated correctly.
podstawa potęgi - the base of the power
wykładnik potęgi - the exponent of the power
potęga o wykładniku naturalnym - power with the natural exponent
kwadrat liczby - the cube of the number
sześcian liczby - the square of the number
zadanie
Source: GroMar, licencja: CC BY 3.0.
RUW4ug8tjfIij1
Interaktywna gra, polegająca na łączeniu wyrazów w pary w ciągu jednej minuty. Czas zaczyna upływać wraz z rozpoczęciem gry. Jeden ruch to odkrywanie najpierw jednej potem drugiej karty z wyrazem. Każdy wyraz jest odczytywany. Kolejny ruch to odkrywanie trzeciej i czwartej karty. W ten sposób odsłuchasz wszystkie wyrazy. Nawigacja z poziomu klawiatury za pomocą strzałek, odsłuchiwanie wyrazów enterem lub spacją. Znajdź wszystkie pary wyrazów.
Interaktywna gra, polegająca na łączeniu wyrazów w pary w ciągu jednej minuty. Czas zaczyna upływać wraz z rozpoczęciem gry. Jeden ruch to odkrywanie najpierw jednej potem drugiej karty z wyrazem. Każdy wyraz jest odczytywany. Kolejny ruch to odkrywanie trzeciej i czwartej karty. W ten sposób odsłuchasz wszystkie wyrazy. Nawigacja z poziomu klawiatury za pomocą strzałek, odsłuchiwanie wyrazów enterem lub spacją. Znajdź wszystkie pary wyrazów.
Match Polish terms with their English equivalents.
wykładnik potęgi
the base of the power
the exponent of the power
power with the natural exponent
the cube of the number
the square of the number
sześcian liczby
podstawa potęgi
potęga o wykładniku naturalnym
kwadrat liczby
Source: Zespół autorski Politechniki Łódzkiej, licencja: CC BY 3.0.