Wróć do informacji o e-podręczniku Wydrukuj Pobierz materiał do PDF Pobierz materiał do EPUB Pobierz materiał do MOBI Zaloguj się, aby dodać do ulubionych Zaloguj się, aby skopiować i edytować materiał Zaloguj się, aby udostępnić materiał Zaloguj się, aby dodać całą stronę do teczki

Reakcja redoks to reakcja chemiczna, w trakcie której dochodzi do przeniesienia elektronów pomiędzy odpowiednimi atomami, czemu towarzyszą zmiany stopni utlenieniastopień utlenieniastopni utlenienia atomów.

Równanie reakcji redoks:

Red1+Utl2Red2+Utl1

Reakcja redoks składa się z dwóch reakcji połówkowych: reakcji utleniania i redukcji. Reakcja utleniania polega na oddawaniu elektronów przez atomy, w wyniku czego dochodzi do podwyższenia stopnia utlenienia. Atom podnoszący swój stopień utlenienia pełni rolę reduktora – Red1.

Równanie reakcji utleniania:

Red1Utl1+ne-

Reakcja redukcji polega na przyjmowaniu elektronów przez atom, dzięki czemu dochodzi do obniżenia stopnia utlenienia. Taki z kolei atom nazywany jest utleniaczemutleniaczutleniaczem – Utl2.

Równanie reakcji redukcji:

Utl2+ne-Red2

gdzie:

  • Red – forma zredukowana;

  • Utl – forma utleniona;

  • ne- – liczba elektronów biorąca udział w reakcji.

bg‑turquoise

Jak przewidzieć przebieg reakcji redoks?

Znając wartości potencjałów standardowych półogniwpotencjał standardowy półogniwa E°potencjałów standardowych półogniw, można przewidzieć przebieg (kierunek) reakcji redoksreakcja redoksreakcji redoks. Potencjały standardowe półogniwpółogniwopółogniw są zebrane w tablicach fizykochemicznych.

Im bardziej ujemny potencjał standardowy półogniwa, tym postać zredukowana jest silniejszym reduktoremreduktorreduktorem, a więc chętniej się utlenia (układ chętniej oddaje elektrony).

Im bardziej dodatni potencjał standardowy półogniwa, tym postać utleniona jest silniejszym utleniaczem – łatwiej dochodzi do reakcji redukcjiredukcjaredukcji (układ chętniej przyjmuje elektrony).

Oznacza to, że w każdej reakcji chemicznej musi zostać spełniony warunek:

Ereduktor<Eutleniacz

Innymi słowy: znajomość wartości potencjałów standardowych półogniw różnego rodzaju pozwala na przewidywanie:

  • czy dana reakcja utlenienia‑redukcji zajdzie w rzeczywistości (w warunkach standardowych);

  • jaki będzie kierunek reakcji chemicznej (w warunkach standardowych).

Poza tym im większa jest różnica potencjałów standardowych półogniw, tym bardziej prawdopodobna jest dana reakcja chemiczna.

Przykład 1

Jak będzie przebiegała reakcja redoks, w której biorą udział atomy żelaza i srebra? Zapisz równanie reakcji utlenianiautlenianieutleniania i redukcji. Podaj reduktor i utleniacz.

Podane są następujące potencjały standardowe półogniw:

E°Fe2+|Fe=-0,44 V
E°Ag+|Ag=0,80 V

Korzystając z podanych potencjałów standardowych półogniw, przewidujemy przebieg reakcji redoks. Wiemy, że potencjał utleniacza jest większy od potencjału reduktora, a więc:

  • postać utleniona srebra (Ag+) będzie przyjmowała elektrony, czyli się redukowała – utleniaczem będzie Ag+;

  • postać zredukowana żelaza (Fe) będzie oddawała elektrony, czyli się utleniała – reduktorem będzie Fe.

Reakcja utleniania:

FeFe2++2 e-

Reakcja redukcji:

Ag++e-Ag

Liczba elektronów oddanych przez reduktor i przyjętych przez utleniacz musi być jednakowa, dlatego należy dokonać bilansu elektronowo‑jonowego. W tym przypadku wszystkie elementy równania reakcji redukcji należy pomnożyć przez 2.

Bilans elektronowo‑jonowy:

FeFe2++2 e-
Ag++e-Ag   |·2
FeFe2++2 e-
2 Ag++2 e-2 Ag

Następnie dodajemy do siebie stronami równanie utleniania i redukcji. Przebieg reakcji redoks jest następujący:

Fe+2 Ag+Fe2++2 Ag
bg‑turquoise

Na czym polega reguła zegara?

Przebieg reakcji redoks można także przewidzieć, korzystając z reguły zegara na podstawie z poniższego schematu.

R1SsJrEV7jk3g
Metoda zegara
Źródło: GroMar Sp.z o.o. opracowano na podstawie: M. Krzeczkowska, J. Loch, A. Mizera, Repetytorium chemia. Liceum – poziom podstawowy i rozszerzony, Warszawa – Bielsko-Biała 2010, licencja: CC BY-SA 3.0.

Układanie schematu należy rozpocząć od narysowania osi liczbowej, na której zaznacza się wartości potencjałów standardowych półogniw. Do miejsc zaznaczenia wartości potencjałów rysuje się proste prostopadłe. Nad osią należy zapisać formy utlenione, a pod osią formy zredukowane. Strzałki oznaczające kierunek przebiegu reakcji, zgodnie z ruchami wskazówek zegara, wskazują, że forma Utl2 musi w trakcie reakcji przekształcić się w formę Red2, a forma Red1 w formę Utl1.

RaJgvNY8Vp1Lf
Przebieg reakcji redoks – reguła zegara
Źródło: GroMar Sp. z o.o., licencja: CC BY-SA 3.0.

Przebieg reakcji redoks jest następujący:

Red1+Utl2Red2+Utl1
Przykład 2

Jak będzie przebiegała reakcja redoks, w której biorą udział atomy miedzi i srebra? Rozwiązując zadanie, skorzystaj z reguły zegara.

E°Ag+|Ag=0,80V
E°Cu2+|Cu=0,34V
R1bv2OTwgr2JM
Przebieg reakcji redoks, w której biorą udział atomy miedzi i srebra – reguła zegara.
Źródło: GroMar Sp. z o.o., licencja: CC BY-SA 3.0.

Przebieg reakcji redoks (po uwzględnieniu bilansu elektronowo‑jonowego):

2 Ag++CuCu2++2 Ag

Reguła zegara pozwala przewidzieć przebieg reakcji redoks, jednak nie uwzględnia współczynników stechiometrycznych. Należy więc samemu zbilansować równanie reakcji tak, aby po prawej i lewej stronie równania reakcji liczba moli danej substancji oraz ładunki były równe.

Potencjały standardowe półogniw są zebrane w tablicach fizykochemicznych.

1

półogniwo

równanie reakcji przebiegającej na półogniwie

E° [V]

Li+|Li

Li++e-Li

-3,04

K+| K

K++e-K

-2,93

Ba2+|Ba

Ba2++2 e-Ba

-2,91

Ca2+|Ca

Ca2++2 e-Ca

-2,84

Na+|Na

Na++e-Na

-2,71

Mg2+|Mg

Mg2++2 e-Mg

-2,36

Be2+|Be

Be2++2 e-Be

-1,97

Al3+|Al

Al3++3 e-Al

-1,66

Mn2+|Mn

Mn2++2 e-Mn

-1,18

H2O|H2,OH-(Pt)

2 H2O+2 e-H2+2OH-

-0,83

Zn2+|Zn

Zn2++2 e-Zn

-0,76

Cr3+|Cr

Cr3++3 e-Cr

-0,74

Fe2+|Fe

Fe2++2 e-Fe

-0,44

Cr3+|Cr2+(Pt)

Cr3++e-Cr2+

-0,40

Co2+|Co

Co2++2 e-Co

-0,28

Ni2+|Ni

Ni2++2 e-Ni

-0,23

AgI|Ag,I-

AgI+e-Ag+I-

-0,15

Sn2+|Sn

Sn2++2 e-Sn

-0,14

Pb2+|Pb

Pb2++2 e-Pb

-0,13

Fe3+|Fe

Fe3++3 e-Fe

-0,04

H3O+|H2

2 H3O++2 e-H2+2 H2O

0,00

AgBr|Ag,Br-

AgBr+e-Ag+Br-

+0,07

Sn4+|Sn2+ (Pt)

Sn4++2 e-Sn2+

+0,15

Cu2+|Cu+(Pt)

Cu2++e-Cu+

+0,15

AgCl|Ag,Cl-

AgCl+e-Ag+Cl-

+0,22

Hg2Cl2|Hg,Cl-

Hg2Cl2+2 e-2 Hg+2Cl-

+0,27

Cu2+|Cu

Cu2++2 e-Cu

+0,34

O2|OH-(Pt)

O2+2 H2O+4 e-4OH-

+0,40

Cu+|Cu

Cu++e-Cu

+0,52

I2|I-(Pt)

I2+2 e-2 I-

+0,54

Fe3+|Fe2+(Pt)

Fe3++e-Fe2+

+0,77

Ag+|Ag

Ag++e-Ag

+0,80

Hg2+|Hg

Hg2++2 e-Hg

+0,85

Br2|Br-(Pt)

Br2+2 e-2Br-

+1,09

MnO2,H3O+|Mn2+(Pt)

MnO2+4 H3O++2 e-Mn2++6 H2O

+1,22

O2,H3O+|H2O(Pt)

O2+4 H3O++4 e-6 H2O

+1,23

Cr2O72-,H3O+|Cr3+(Pt)

Cr2O72-+14 H3O++6 e-2Cr3++21 H2O

+1,33

Cl2|Cl-(Pt)

Cl2+2 e-2 Cl-

+1,36

Au3+|Au

Au3++3 e-Au

+1,50

MnO4-,H3O+|Mn2+(Pt)

MnO4-+8 H3O++5 e-Mn2++12 H2O

+1,51

Mn3+|Mn2+(Pt)

Mn3++e-Mn2+

+1,51

Ce4+|Ce3+(Pt)

Ce4++e-Ce3+

+1,72

H2O2,H3O+|H2O(Pt)

H2O2+2 H3O++2 e-4 H2O

+1,78

Co3+|Co2+(Pt)

Co3++e-Co2+

+1,92

F2|F-

F2+2 e-2 F-

+2,87

Tabela potencjałów standardowych półogniw w temperaturze 25°C.

Indeks dolny Na podstawie: A. Bielański, Podstawy chemii nieorganicznej, Warszawa 2010 oraz L. Jones, P. Atkins, Chemia ogólna: cząsteczki, materia, reakcje, tłum. J. Kuryłowicz, Warszawa 2012. Indeks dolny koniec

Słownik

potencjał standardowy półogniwa E°
potencjał standardowy półogniwa E°

potencjał półogniwa, w którym metal zanurzony jest w roztworze zawierającym jony potencjałotwórcze o stężeniu 1 moldm3, a gazy są pod ciśnieniem 1013 hPa w temperaturze 298 K (25°C), mierzony względem standardowego półogniwa wodorowego

półogniwo
półogniwo

zbudowane z przewodnika elektronowego, który jest zanurzony w przewodniku jonowym (najczęściej to roztwór odpowiedniego elektrolitu)

reakcja redoks
reakcja redoks

reakcja chemiczna, w której dochodzi do zmiany stopni utlenienia atomów pierwiastków chemicznych

redukcja
redukcja

przyjmowanie elektronów przez jony lub atomy pierwiastków, w wyniku czego dochodzi do obniżenia stopnia utlenienia

reduktor
reduktor

atom pierwiastka podwyższający swój stopień utlenienia (utleniający się)

stopień utlenienia
stopień utlenienia

ładunek, jaki zgromadziłby się na atomie danego pierwiastka wchodzącego w skład związku chemicznego, przy założeniu, że wszystkie wiązania chemiczne w związku mają charakter wiązań jonowych

utleniacz
utleniacz

atom pierwiastka obniżający swój stopień utlenienia (redukujący się)

utlenianie
utlenianie

oddawanie elektronów przez jony lub atomy pierwiastków, w wyniku czego dochodzi do podwyższenia stopnia utlenienia

standardowe półogniwo wodorowe (SEW)
standardowe półogniwo wodorowe (SEW)

złożone z blaszki platynowej Pt, pokrytej czernią platynową, zanurzonej w roztworze zawierającym jony H3O+ o stężeniu 1 moldm3 oraz omywanej gazowym wodorem pod ciśnieniem 1013 hPa w temperaturze 298 K

Bibliografia

Atkins P., Jones L., Chemia ogólna. Cząsteczki, materia, reakcje, tłum. Jan Kuryłowicz, Warszawa 2012.

Bielański A., Podstawy chemii nieorganicznej, Warszawa 2010.

Krzeczkowska M., Loch J., Mizera A., Repetytorium chemia. Liceum – poziom podstawowy i rozszerzony, Warszawa – Bielsko‑Biała 2010.