Przystawanie trójkątów
W tym rozdziale przypomnimy podstawowe związki między kątami i bokami w figurach geometrycznych.
Udowadniając wiele własności figur geometrycznych, często wykorzystujemy cechy przystawania trójkątów.

Film dostępny pod adresem /preview/resource/R1W2EmUcKBoOP
Trzecia cecha przystawania trójkątów.
Przystawanie trójkątów i wynika z każdej z następujących cech przystawania trójkątów:
cecha przystawania bok–bok–bok ()
Trójkąty i są przystające wtedy i tylko wtedy, gdy długości boków jednego trójkąta są odpowiednio równe długościom boków drugiego trójkąta.
, , .RINY2Dl3TApGN1 Źródło: Zespół autorski Politechniki Łódzkiej, licencja: CC BY 3.0.
cecha przystawania bok–kąt–bok ()
Trójkąty i są przystające wtedy i tylko wtedy, gdy długości dwóch boków i kąt między tymi bokami w jednym trójkącie są odpowiednio równe dwóm bokom i kątowi między tymi bokami w drugim trójkącie.
, , .R1M1uZg3srFB21 Źródło: Zespół autorski Politechniki Łódzkiej, licencja: CC BY 3.0.
cecha przystawania kąt–bok–kąt ()
Trójkąty i są przystające wtedy i tylko wtedy, gdy długości boku i miary kątów przyległych do tego boku w jednym trójkącie są odpowiednio równe długości boku i miarom kątów przyległych do tego boku w drugim trójkącie.
, , .R1b80UClx4Thx1 Źródło: Zespół autorski Politechniki Łódzkiej, licencja: CC BY 3.0.