Scenariusz
Temat
Symetralna odcinka
Etap edukacyjny
Drugi
Podstawa programowa
XV. Symetrie. Uczeń:
1) rozpoznaje symetralną odcinka i dwusieczną kąta;
2) zna i stosuje w zadaniach podstawowe własności symetralnej odcinka i dwusiecznej kąta jak w przykładowym zadaniu:
Wierzchołek C rombu ABCD leży na symetralnych boków AB i AD. Oblicz kąty tego rombu.
Czas
45 minut
Cel ogólny
Dostrzeganie regularności, podobieństw oraz analogii i formułowanie wniosków na ich podstawie.
Cele szczegółowe
1. Poznanie pojęcia i konstruowanie symetralnej odcinka.
2. Wykorzystanie własności symetralnej odcinka.
3. Porozumiewanie się w języku angielskim, rozwijanie matematycznych i podstawowych kompetencji naukowo‑technicznych oraz informatycznych, kształtowanie umiejętności uczenia się.
Efekty uczenia
Uczeń:
- konstruuje symetralną odcinka,
- wykorzystuje własności symetralnej odcinka.
Metody kształcenia
1. Analiza sytuacyjna.
2. Dyskusja.
Formy pracy
1. Praca indywidualna.
2. Praca zbiorowa.
Etapy lekcji
Wprowadzenie do lekcji
Nauczyciel informuje uczniów, że na lekcji dowiedzą się, co to jest symetralna odcinka oraz nauczą się konstruować symetralną odcinka.
Polecenie
Uczniowie przypominają sobie, co to jest odcinek oraz jak można znaleźć środek odcinka.
Przedstawiają różne metody znalezienia środka odcinka.
Realizacja lekcji
Definicja symetralnej odcinka.
Uczniowie poznają definicję symetralnej odcinka.
[Ilustracja 1]
- Symetralna odcinka to prosta prostopadła do tego odcinka, przechodząca przez jego środek.
Polecenie
[Geogebra aplet]
Uczniowie pracują indywidualnie, korzystając z komputerów.
Ich zadaniem jest obserwacja konstrukcji symetralnej odcinka.
Polecenie
Uczniowie rysują dowolny odcinek i konstruują symetralną odcinka.
Uczniowie wspólnie zastanawiają się, jakie są własności punktów leżących na symetralnej odcinka.
Wniosek, jaki powinni wyciągnąć uczniowie:
Każdy z punktów leżących na symetralnej odcinka jest równo oddalony od obu końców tego odcinka.
Polecenie
Jaki trójkąt otrzymamy, gdy połączymy dowolny punkt leżący na symetralnej odcinka AB z punktami A i B?
Polecenie dla chętnych:
Uczniowie obliczają, jaka jest miara kąta między symetralnymi sąsiednich boków kwadratu.
Podsumowanie lekcji
Uczniowie wykonują ćwiczenia podsumowujące.
Następnie wspólnie podsumowują zajęcia, formułując wnioski do zapamiętania.
- Symetralna odcinka to prosta prostopadła do tego odcinka, przechodząca przez jego środek.
- Każdy z punktów leżących na symetralnej odcinka jest równo oddalony od obu końców tego odcinka.