Wróć do informacji o e-podręczniku Wydrukuj Pobierz materiał do PDF Pobierz materiał do EPUB Pobierz materiał do MOBI Zaloguj się aby dodać do ulubionych Zaloguj się, aby udostępnić materiał Dodaj całą stronę do teczki
Cięciwa sfery (kuli)
Definicja: Cięciwa sfery (kuli)

Cięciwa sfery (kuli) to odcinek o końcach leżących na sferze. Cięciwa przechodząca przez środek sfery (kuli), to średnica

R1IzPlhNQuBI31
Źródło: Zespół autorski Politechniki Łódzkiej, licencja: CC BY 3.0.
Działania na potęgach    
Twierdzenie: Działania na potęgach    
  • Iloczyn potęg o tych samych podstawach

Dla dowolnej liczby rzeczywistej a0 i dowolnych liczb całkowitych nm prawdziwa jest równość

anam=an+m.
R1WKxrD2CezmO1
  • Iloraz potęg o tych samych podstawach

Dla dowolnej liczby rzeczywistej a0 i dowolnych liczb całkowitych nm prawdziwa jest równość

ana =an-m.
R1X2ngJpF9lV01
  • Potęga potęgi

Dla dowolnej liczby rzeczywistej a0 i dowolnych liczb całkowitych nm prawdziwa jest równość

anm=anm.
R1c65xKTWGhCm1
  • Iloczyn potęg o tych samych wykładnikach

Dla dowolnych liczb rzeczywistych a0b0 i dowolnej liczby całkowitej n prawdziwa jest równość

anbn=abn.
RSc0RT5yFz1P31
  • Iloraz potęg o tych samych wykładnikach

Dla dowolnych liczb rzeczywistych a0b0 i dowolnej liczby całkowitej n prawdziwa jest równość

anbn =abn.
RXdhHaVVnbedK1
Działania na potęgach     
Twierdzenie: Działania na potęgach     
  • Iloczyn potęg o tych samych podstawach

Dla dowolnej liczby rzeczywistej a0 i dowolnych liczb całkowitych nm prawdziwa jest równość

anam=an+m.
R1WKxrD2CezmO1
  • Iloraz potęg o tych samych podstawach

Dla dowolnej liczby rzeczywistej a0 i dowolnych liczb całkowitych nm prawdziwa jest równość

ana =an-m.
R1X2ngJpF9lV01
  • Potęga potęgi

Dla dowolnej liczby rzeczywistej a0 i dowolnych liczb całkowitych nm prawdziwa jest równość

anm=anm.
R1c65xKTWGhCm1
  • Iloczyn potęg o tych samych wykładnikach

Dla dowolnych liczb rzeczywistych a0b0 i dowolnej liczby całkowitej n prawdziwa jest równość

anbn=abn.
RSc0RT5yFz1P31
  • Iloraz potęg o tych samych wykładnikach

Dla dowolnych liczb rzeczywistych a0b0 i dowolnej liczby całkowitej n prawdziwa jest równość

anbn =abn.
RXdhHaVVnbedK1
Koło     
Definicja: Koło     

Kołem o  środku w punkcie S i promieniu r nazywamy zbiór tych punktów płaszczyzny, których odległość od punktu S jest mniejsza bądź równa r.

RD4TQOGUHRKh31
Źródło: Zespół autorski Politechniki Łódzkiej, licencja: CC BY 3.0.

K(S,r) – koło o środku w punkcie S i promieniu r

Kula
Definicja: Kula

Kula to zbiór wszystkich punktów przestrzeni, których odległość od punktu, zwanego środkiem, jest nie większa od długości odcinka, zwanego promieniem kuli.

RA9xjjAN70Xxy1
Źródło: Zespół autorski Politechniki Łódzkiej, licencja: CC BY 3.0.
Odcinek koła
Definicja: Odcinek koła

Odcinkiem koła (odcinkiem kołowym) nazywamy część koła odciętą przez cięciwę wraz z tą cięciwą.

RQhUz5DnzKzGB1
Źródło: Zespół autorski Politechniki Łódzkiej, licencja: CC BY 3.0.

Każda cięciwa wyznacza dwa odcinki koła. Średnica dzieli koło na dwa półkola.

Oś obrotu
Definicja: Oś obrotu

Obracając figurę płaską dookoła prostej p, zawartej w tej samej płaszczyźnie, otrzymujemy powierzchnię, która ogranicza figurę, zwaną bryłą obrotową. Prostą p nazywamy osią obrotu. Jest ona osią symetrii bryły obrotowej.

Sfera
Definicja: Sfera

Sfera to zbiór wszystkich punktów przestrzeni, których odległość od punktu, zwanego środkiem, jest równa długości odcinka, zwanego promieniem sfery.

R1CTalfNIOgvQ1
Źródło: Zespół autorski Politechniki Łódzkiej, licencja: CC BY 3.0.
Wycinek koła
Definicja: Wycinek koła

Wycinkiem koła (wycinkiem kołowym) nazywamy część tego koła ograniczoną łukiem i  ramionami kąta środkowego.

RLPoS2EA0Rav61
Źródło: Zespół autorski Politechniki Łódzkiej, licencja: CC BY 3.0.
Aplikacje dostępne w
Pobierz aplikację ZPE - Zintegrowana Platforma Edukacyjna na androida