R1SI3r42jhkfA

The quadratic equations

Source: licencja: CC 0.

Równania kwadratowe

Learning objectives

You will understand the method of solving quadratic equations.

Learning effect

  • You solve quadratic equations.

  • You solve word problems that require finding the roots of a quadratic equation.

R1FbpGPHNMhVK1
nagranie abstraktu

Remind the most important information about the equation with one unknown. The goal of the lesson is solving quadratic equations. Find the definition of the quadratic equation in the available sources.

quadratic equation
Definition: quadratic equation
R1JlxfD1xzoj41
nagranie abstraktu

The quadratic equation (with the unknown x) is the equation that can be transformed to the form ax2+bx+c=0 where a,b,c are known real numbers and  a0.

Ro70p3PLcNETM1
nagranie abstraktu

Consider how such equation can be solved. Note that solving a quadratic equationquadratic equationquadratic equation is equivalent to a calculation of x‑intercepts of the corresponding quadratic functionquadratic functionquadratic function.

RirWuWgELBXIY1
nagranie abstraktu

The existence and the number of solutions of the quadratic equation ax2+bx+c=0, where a0 depend on the sign of the discriminant =b2-4ac. Find the theorem on the number of the roots of the quadratic equationquadratic equationquadratic equation.

solution of the quadratic equation
Theorem: solution of the quadratic equation

The quadratic equation ax2+bx+c=0, where a0:

  • has no solution when Δ<0,

  • has one solution x0=-b2a, when Δ=0,

  • has two solutions x1=-b-2a, x2=-b+2a when Δ>0.

Re1x79oX1Vtc8
Algorithm of finding the roots of the quadratic equation
Source: GroMar, licencja: CC BY 3.0.
R6EJQasBs00Rv1
nagranie abstraktu

Solve the exercises using the flowchart above.

Task 1
RyxsGa4WHGVHs1
nagranie abstraktu

Solve the equation:

  1. 3x2-2x-7=0

  2. -36x2+12x-1=0

  3. 4x2+3x+77=0

Task 2
R5seK8xhV8Niv1
nagranie abstraktu

Analyse the applet presenting the method of solving incomplete quadratic equationsquadratic equationquadratic equations without determining the discriminant and draw conclusions.

RcZco2oiQj5Tp1
Aplet geogebra: Rozwiązywanie równań kwadratowych niezupełnych. Poniżej znajduje się galeria będąca wersją alternatywną dla aplikacji.
Source: GroMar, licencja: CC BY 3.0.
RpSHlZjvrjgJq1
nagranie abstraktu

Solve the exercises using the acquired knowledge.

Task 3
RyxsGa4WHGVHs1
nagranie abstraktu

Solve the equation:

  1. 4x2-25=0

  2. -x2+6x=0

  3. 2x2+8=0

Task 4
RQbARF6qpbpto1
nagranie abstraktu

The sum of squares of three consecutive natural numbers is equal to 194. Find these numbers.

Task 5
RL6QgIq9ho9M61
nagranie abstraktu

The perimeter of a rhombus is 116 cm. The lengths of the diagonals of this rhombus differ by 2 cm. Calculate the area of the rhombus.

Task 6

An extra task:

For what values of m the equation x2-2(m+2)x+4m+5=0 has two roots fulfilling the condition x2-x1=2?

Perform consolidating exercises.

Remember:

The quadratic equation ax2+bx+c=0, where a0.

  • has no solution when ∆ < 0,

  • has one solution x0=-b2a, when ∆ = 0,

  • has two solutions x1=-b-2a, x2=-b+2a when ∆ > 0.

Exercises

Exercise 1
RQcoz3RHRsSEp
Wersja alternatywna ćwiczenia: Determine which sentences are true. Możliwe odpowiedzi: 1. The roots of the equation x2=16 are {-4, 4}., 2. The roots of the equation x2-121=0  are {-11, 11}., 3. The roots of the equation x2+4x-5=0 are {-5, 1}, 4. The equation -x2+3x=5 hasn't any roots., 5. The equation (2x+3)2-16=0 hasn't any roots., 6. The root of the equation x(4-x)=(2x+3)(x-2)+8 is {1}.
Rzadanie
Source: GroMar, licencja: CC BY 3.0.
Exercise 2

Give an example of a quadratic equation:

  • that has no solution,

  • which is solved by two opposite numbers,

  • whose the only solution is the number 34.

Exercise 3

Describe in English the method of solving the quadratic equation ax2+bx=0.

Exercise 4
Rhvgq5gOffP49
Wersja alternatywna ćwiczenia: Indicate which pairs of expressions or words are translated correctly. Możliwe odpowiedzi: 1. funkcja kwadratowa - quadratic function, 2. równanie kwadratowe niezupełne - incomplete quadratic equation, 3. równanie kwadratowe - quadratic equation, 4. pierwiastek równania kwadratowego - root of the quadratic equation, 5. algorytm - number of solutions of an equation, 6. liczba rozwiązań równania - algorithm
zadanie
Source: GroMar, licencja: CC BY 3.0.
R15vzynMHJVbA1
Interaktywna gra, polegająca na łączeniu wyrazów w pary w ciągu jednej minuty. Czas zaczyna upływać wraz z rozpoczęciem gry. Jeden ruch to odkrywanie najpierw jednej potem drugiej karty z wyrazem. Każdy wyraz jest odczytywany. Kolejny ruch to odkrywanie trzeciej i czwartej karty. W ten sposób odsłuchasz wszystkie wyrazy. Nawigacja z poziomu klawiatury za pomocą strzałek, odsłuchiwanie wyrazów enterem lub spacją. Znajdź wszystkie pary wyrazów.
Source: Zespół autorski Politechniki Łódzkiej, licencja: CC BY 3.0.

Glossary

quadratic function
quadratic function

funkcja kwadratowa

R1L3PSuJyvsaE1
wymowa w języku angielskim: quadratic function
incomplete quadratic equation
incomplete quadratic equation

równanie kwadratowe niezupełne

RzlsaAoqG0JUy1
wymowa w języku angielskim: incomplete quadratic equation
quadratic equation
quadratic equation

równanie kwadratowe niezupełne

RKNqIi4difuZ51
wymowa w języku angielskim: quadratic equation
root of the quadratic equation
root of the quadratic equation

pierwiastek równania kwadratowego

Rb5avygQAH5Pj1
wymowa w języku angielskim: root of the quadratic equation
algorithm
algorithm

algorytm

RgH5syagLTXeE1
wymowa w języku angielskim: algorithm
number of solutions of an equation
number of solutions of an equation

liczba rozwiązań równania

RyK7pbLzEZu7s1
wymowa w języku angielskim: number of solutions of an equation

Keywords

quadratic functionquadratic functionquadratic function

number of solutions of an equationnumber of solutions of an equationnumber of solutions of an equation

quadratic equationquadratic equationquadratic equation

root of the quadratic equationroot of the quadratic equationroot of the quadratic equation

algorithmalgorithmalgorithm