Topicm598a9a03cd5098b2_1528449000663_0Topic

The monotonicity of functions

Levelm598a9a03cd5098b2_1528449084556_0Level

Third

Core curriculumm598a9a03cd5098b2_1528449076687_0Core curriculum

V. Functions. The student:

4) reads from the graph of the function: the domain, the range, roots, monotonic intervals, intervals in which the function takes values not greater (not smaller) or smaller (not greater) than a given number, greatest and smallest values of the function (if they exist) in the closed interval and arguments for which the function takes greatest and smallest values.

Timingm598a9a03cd5098b2_1528449068082_0Timing

45 minutes

General objectivem598a9a03cd5098b2_1528449523725_0General objective

Using mathematical objects, interpreting mathematical concepts.

Specific objectivesm598a9a03cd5098b2_1528449552113_0Specific objectives

1. Determining the monotonicity of the function.

2. Identifying and drawing graphs of monotonic functions.

3. Communicating in English, developing basic mathematical, computer and scientific competences, developing learning skills.

Learning outcomesm598a9a03cd5098b2_1528450430307_0Learning outcomes

The student:

- determines the monotonicity of the function,

- identifies and draws graphs of monotonic functions.

Methodsm598a9a03cd5098b2_1528449534267_0Methods

1. Discussion.

2. Flipped classroom method.

Forms of workm598a9a03cd5098b2_1528449514617_0Forms of work

1. Individual work.

2. Group work.

Lesson stages

Introductionm598a9a03cd5098b2_1528450127855_0Introduction

The teacher introduces the subject of the lesson - determining the monotonicity of the function and identifying and drawing graphs of monotonic functions.

At home students look for information about the monotonicity of functions and they find out what are the properties of monotonic and non‑monotonic functionsnon‑monotonic functionnon‑monotonic functions.

Procedurem598a9a03cd5098b2_1528446435040_0Procedure

Flipped classroom method.

A student chosen by the teacher presents information about the monotonicity of functions prepared at home.

Definition of the monotonic function
- A monotonic functionmonotonic functionmonotonic function is a function that preserves the given order. It is a function increasing, non‑decreasing (increasing or constant), decreasing or non‑increasing (decreasing or constant).

Task
Students work individually, using computers. Their task is to observe how the values of the function change while the change of arguments.

[Geogebra applet]

Students formulate the definition of the increasing functionincreasing functionincreasing function.

Definition of the increasing functionincreasing functionincreasing function
- Let f be a function defined in the interval 〈a; b〉.
If for any xIndeks dolny 1, xIndeks dolny 2 ∈ 〈a; b〉 such that xIndeks dolny 1 < xIndeks dolny 2 the condition
f(xIndeks dolny 1) < f(xIndeks dolny 2)
is met, then we say that the function is increasing in the interval 〈a; b〉.

[Illustration 1]

Students together determine what are the properties of the decreasing and constant functionconstant functionconstant function and write down definitions of these functions.

Definition of the decreasing functiondecreasing functiondecreasing function
- Let f be a function defined in the interval 〈a; b〉.
If for any xIndeks dolny 1, xIndeks dolny 2 ∈ 〈a; b〉 such that xIndeks dolny 1 < xIndeks dolny 2 the condition
f(xIndeks dolny 1) > f(xIndeks dolny 2)
is met, then we say that the function is decreasing in the interval 〈a; b〉.

Definiton of the constant functionconstant functionconstant function
- Let f be a function defined in the interval 〈a; b〉.
If for any xIndeks dolny 1, xIndeks dolny 2 ∈ 〈a; b〉 such that xIndeks dolny 1 < xIndeks dolny 2 the condition
f(xIndeks dolny 1) = f(xIndeks dolny 2)
is met, then we say that the function is constant in the interval 〈a; b〉.

Students use obtained information in the exercises.

Task
There is the plot of the function a.

[Illustration 2]

1) Give the domain of the function a.

2) Give a(1), a(2), a(3), a(4), a(5), a(6).

3) Check if for arguments 1 and 2 belonging in the domain of the function, the condition of the increasing functionincreasing functionincreasing function is met.

4) Is the function increasing? Justify the answer.

Task
Draw three plots of decreasing functiondecreasing functiondecreasing function defined for such x that -1 < x < 6.

Task
Draw three plots of constant functions defined for such x that -2 ≤ x < 4.

Discussion – what kind of function will be monotonic in intervals? Students analyse the problem based on their own examples, for examples plots of functions.

Definition of the function monotonic in intervals
- A function monotonic in intervals – a function whose domain can be divided into separate intervals in which the function is monotonic.

Task
Identify maximal intervals of monotonicity of the functionintervals of monotonicity of the functionintervals of monotonicity of the function presented in the plot.

[Illustration 3]

An extra task:
Draw an examples of any non‑monotonic function.
m598a9a03cd5098b2_1527752263647_0An extra task:
Draw an examples of any non‑monotonic function.

Lesson summarym598a9a03cd5098b2_1528450119332_0Lesson summary

Students do the revision exercises.

Then together they sum‑up the classes, by formulating the conclusions to memorise.

Definition of the increasing functionincreasing functionincreasing function
- Let f be a function defined in the interval 〈a; b〉.
If for any xIndeks dolny 1, xIndeks dolny 2 ∈ 〈a; b〉 such that xIndeks dolny 1 < xIndeks dolny 2 the condition
f(xIndeks dolny 1) < f(xIndeks dolny 2)
is met, then we say that the function is increasing in the interval 〈a; b〉.

Definition of the decreasing functiondecreasing functiondecreasing function
- Let f be a function defined in the interval 〈a; b〉.
If for any xIndeks dolny 1, xIndeks dolny 2 ∈ 〈a; b〉 such that xIndeks dolny 1 < xIndeks dolny 2 the condition
f(xIndeks dolny 1) > f(xIndeks dolny 2)
is met, then we say that the function is decreasing in the interval 〈a; b〉.

Definiton of the constant functionconstant functionconstant function
- Let f be a function defined in the interval 〈a; b〉.
If for any xIndeks dolny 1, xIndeks dolny 2 ∈ 〈a; b〉 such that xIndeks dolny 1 < xIndeks dolny 2 the condition
f(xIndeks dolny 1) = f(xIndeks dolny 2)
is met, then we say that the function is constant in the interval 〈a; b〉.

Definition of the monotonic function
- A monotonic functionmonotonic functionmonotonic function is a function that preserves the given order. It is a function increasing, non‑decreasing (increasing or constant), decreasing or non‑increasing (decreasing or constant).

Selected words and expressions used in the lesson plan

constant functionconstant functionconstant function

decreasing functiondecreasing functiondecreasing function

increasing functionincreasing functionincreasing function

intervals of monotonicity of the functionintervals of monotonicity of the functionintervals of monotonicity of the function

monotonic functionmonotonic functionmonotonic function

non‑monotonic functionnon‑monotonic functionnon‑monotonic function

m598a9a03cd5098b2_1527752263647_0
m598a9a03cd5098b2_1527752256679_0
m598a9a03cd5098b2_1527712094602_0
m598a9a03cd5098b2_1528449000663_0
m598a9a03cd5098b2_1528449084556_0
m598a9a03cd5098b2_1528449076687_0
m598a9a03cd5098b2_1528449068082_0
m598a9a03cd5098b2_1528449523725_0
m598a9a03cd5098b2_1528449552113_0
m598a9a03cd5098b2_1528450430307_0
m598a9a03cd5098b2_1528449534267_0
m598a9a03cd5098b2_1528449514617_0
m598a9a03cd5098b2_1528450127855_0
m598a9a03cd5098b2_1528446435040_0
m598a9a03cd5098b2_1528450119332_0
non‑monotonic function1
non‑monotonic function

funkcja niemonotoniczna

RnkyIsXj00pEi1
wymowa w języku angielskim: non‑monotonic function
monotonic function1
monotonic function

funkcja monotoniczna

RfH8NYzT0jDMD1
wymowa w języku angielskim: monotonic function
increasing function1
increasing function

funkcja rosnąca

Rj8VsGo7SZxk31
wymowa w języku angielskim: increasing function
constant function1
constant function

funkcja stała

RLY2g0nWrSpa21
wymowa w języku angielskim: constant function
decreasing function1
decreasing function

funkcja malejąca

Rf1WZyR77pKZs1
wymowa w języku angielskim: decreasing function
intervals of monotonicity of the function1
intervals of monotonicity of the function

przedziały monotoniczności funkcji

R46wZ5sUo2Mw31
wymowa w języku angielskim: intervals of monotonicity of the function