1
Symulacja 1

Zapoznaj się z symulacją, która ilustruje równanie Clapeyrona oraz zmiany parametrów układu. Zwróć uwagę, że poruszające się w zamkniętych pojemnikach kulki prezentują model cząsteczek gazu doskonałego, natomiast kształt cząsteczek gazów rzeczywistych może różnić się od zaprezentowanego poniżej. 
Za pomocą suwaków dołączonych do wykresów zmieniaj parametry układu, a następnie odpowiedz na pytania zamieszczone pod symulacją.

RGun9Z8NZGTaF
W górnej części ekranu, pośrodku pojawia się równanie klapejrona. Po najechaniu myszką na odpowiedni symbol wzoru, wyświetla się wyjaśnienie.Równanie klapejrona pe razy fał równa się en razy er razy teWyjaśnienie symboli równania klapejronaPe – ciśnienie gazuFał - objętość En – liczba moli gazuEr – temperatura bezwzględnaTe – temperatura gazuPoniżej w symulacji umieszczone są dwa układy współrzędnych, na których rysowane są funkcje: ciśnienia od objętości oraz objętości od temperatury. Funkcje są będą wykreślane poprzez zmianę odpowiednich parametrów. Na wykresie funkcji ciśnienia od objętości temperatura jest wartością stałą. Na wykresie funkcji objętości od temperatury ciśnienie jest wartością stałą.Obok każdego z wykresów przedstawiono zbiorniki z gazem. Zbiorniki mają tłok zmieniający objętość gazu oraz palnik mogący zmienić temperaturę gazu.Na wykresie funkcji ciśnienia od objętości za pomocą suwaka można wybrać objętość. Wraz ze wzrostem objętości podnosi się tłoczek w zbiorniku z gazem zwiększając objętość gazu. Im większa objętość zadana przez tłoczek tym większą objętość w zbiorniku zajmuje gaz. Palnik jest wyłączony.Na wykresie funkcji objętości od temperatury za pomocą suwaka można zmienić temperaturę układu. Wzrost temperatury symbolizuje rosnący płomień palnika. Wraz ze zwiększaniem temperatury podnosi się tłok zwiększając objętość układu. Im wyższa temperatura, tym szybciej poruszają się cząsteczki gazu w układzie.
Symulacja interaktywna pt. „Równanie Clapeyrona.
Źródło: GroMar Sp. z o.o., licencja: CC BY-SA 3.0.
Podpowiedźgreenwhite

Równanie Clapeyrona (równanie stanu gazu doskonałego)

jest kombinacją wszystkich omówionych praw gazowych:

pV=nRT

Gdzie:

  • p – ciśnienie gazu;

  • V – objętość;

  • n – liczba moli gazu;

  • T – temperatura bezwzględna (w Kelwinach);

  • R – stała gazowa; 8,3143·103 JK·mol=83,14 hPa·dm3mol·K.

Polecenie 1
R4D7P8k0lddAH
(Uzupełnij).
R1dNJgzhbDY8z
Ćwiczenie 1
Dokończ zdanie. Temperatura gazu oraz jego objętość są wielkościami proporcjonalnymi, gdy ciśnienie Możliwe odpowiedzi: 1. zmienia się od 1000 hPa do 1025 hPa, 2. jest wielkością stałą, 3. maleje, 4. rośnie
1
Ćwiczenie 2

Załóżmy, że gaz zajmuje pewną stałą objętość. Odpowiedz, jak zmienia się ciśnienie gazu, gdy temperatura pojemnika, w którym znajduje się gaz, rośnie.

RSA2CMLqo2uZq
(Uzupełnij).
1
Ćwiczenie 3

Wyprowadź zależność między parametrami równania Clapeyrona w momencie, gdy temperatura układu, w którym znajduje się gaz, przyjmuje stałą wartość.

RNT7K3CbHgURv
(Uzupełnij).
R8xSFIDOxnxq9
(Uzupełnij).