R1SI3r42jhkfA

Points, lines and planes in space

Source: licencja: CC 0.

Punkty, proste i płaszczyzny w przestrzeni

Learning objectives

You will learn to identify mutual position of lines in space, especially perpendicular lines that do not cross and also to apply the concept of an angle between the line and the plane as well as the dihedral angle between half‑planes.

Learning effect

  • You identify mutual position of lines in space, especially perpendicular lines that do not cross and also apply the concept of an angle between the line and the plane as well as the dihedral angle between half‑planes.

Prepare information about the following subjects:

  1. Mutual position of the line and the planeplaneplane.

  2. Mutual position of lines in space.

  3. The angle between the line and the planeplaneplane.

  4. The dihedral angledihedral angledihedral angle between half‑planes.

Check if information you prepared is the same as the following one:

1. Mutual position of the line and the planeplaneplane

  • a line is located on the plane (each point of the line is also a point of the planeplaneplane),

  • a line breaks the planeplaneplane (the line has exactly one common point with the planeplaneplane),

  • a line is parallel to the planeplaneplane and has no common points with it.

2. Mutual position of lines in space

  • Lines overlap (they are parallel),

  • Lines are located on one planeplaneplane and cross at one point,

  • Lines are located on one planeplaneplane and have no common points (they are parallel),

  • Lines are not located on one planeplaneplane and have no common points (they are oblique).

3. The angle between the line and the planeplaneplane

  • The line k and the planeplaneplane p are perpendicular only and only if the line k is parallel to each line located on the planeplaneplane p,

  • The angle between the line k and the plane pangle between the line k and the plane pangle between the line k and the plane p is the acute angle between this line and orthographic projection on the planeorthographic projection on the planeorthographic projection on the plane p,

  • If the line l breaks the planeplaneplane p and is not perpendicular to it, the line k is an orthographic projection of the line l on the planeplaneplane p, the line m is located on the planeplaneplane p and crosses the line l, then the line m is perpendicular to the line l only and only if it is perpendicular to the line k (theorem about three perpendicular linesperpendicular linesperpendicular lines).

4. The dihedral angledihedral angledihedral angle between half‑planes

  • the dihedral angledihedral angledihedral angle is the sum of two half‑planes with common edge and one of two areas that this half‑planes cut from the space,

  • the linear anglelinear anglelinear angle of the dihedral angledihedral angledihedral angle is the common part of the dihedral angledihedral angledihedral angle and the planeplaneplane perpendicular to its edge.

Task 1
RhCWK6JhLNz2t1
nagranie abstraktu

Open the applet and observe the angle that a line creates with a planeplaneplane. Compare animations with information you prepared.

R1KCGGhUumdC71
Aplet geogebra: Kąt między prostą a płaszczyzną. Poniżej znajduje się galeria będąca wersją alternatywną dla aplikacji.
Source: GroMar, licencja: CC BY 3.0.
Task 2
RKm0h8k6iRWEn1
nagranie abstraktu

There are lines a, b and c. How can lines a and b be located in relation to each other if lines a, b and c are not located on the same planeplaneplane and the line b has one common points with the line a and one common point with the line c. Make a proper drawing.

Task 3
R1Z4JOPYxmXLc1
nagranie abstraktu

There are three noncollinear points A, B, C on the planeplaneplane p. The distance from the point A and the line BC and the distance between points A and B are the same and are equal to 4 cm. The length of the distance AC is equal to 5 cm. The line segment AS is perpendicular to the planeplaneplane p and its distance is 12 cm. Calculate the area of the triangle BCS. Make a proper drawing.

Task 4
RsPxWuVCo4JRG1
nagranie abstraktu

Draw a cube ABCDEFGH and then park angles in it:

α – the angle between the line BG and the planeplaneplane ABCD,
β – angle between the line AG and the planeplaneplane EFGH,
γ – the angle between the line AD and the planeplaneplane DBFH,

Task 5
R1KTSInKTsC7g1
nagranie abstraktu

Calculate the dihedral angledihedral angledihedral angle knowing that the distance between the point P located on the wall of this angle and its edge is equal to 15 cm. The distance from the point P and the other wall of this angle is equal to 7,5 cm. Make a proper drawing.

Task 6
R16kuEr1KAC901
nagranie abstraktu

An extra task:

There is a square KLMN. Prove that triangles KLS and LMS are right‑angled if we know that the line segments NS is perpendicular to the planeplaneplane KLMN.

Do the revision exercises.

Remember:

  • A line can be located on the planeplaneplane, break the planeplaneplane or have no common points with the planeplaneplane.

  • Two lines in space can overlap, be located on one planeplaneplane or not be located on one planeplaneplane and have no common points (be oblique).

  • The line k and the planeplaneplane p are perpendicular only and only if the line k is parallel to each line located on the planeplaneplane p.

  • The angle between the line k and the plane pangle between the line k and the plane pangle between the line k and the plane p is the acute angle between this line and orthographic projection on the planeorthographic projection on the planeorthographic projection on the plane p.

  • If the line l breaks the planeplaneplane p and is not perpendicular to it, the line k is an orthographic projection of the line l on the planeplaneplane p, the line m is located on the planeplaneplane p and crosses the line l, then the line m is perpendicular to the line l only and only if it is perpendicular to the line k (theorem about three perpendicular linesperpendicular linesperpendicular lines).

  • The dihedral angledihedral angledihedral angle is the sum of two half‑planes with common edge and one of two areas that this half‑planes cut from the space.

  • The linear anglelinear anglelinear angle of the dihedral angledihedral angledihedral angle is the common part of the dihedral angledihedral angledihedral angle and the planeplaneplane perpendicular to its edge.

Exercises

Exercise 1
R17jSfaOFLA4M
Wersja alternatywna ćwiczenia: In the cuboid ABCDEFGH the line perpendicular to the plane BCGF is: Możliwe odpowiedzi: 1. the line AE, 2. the line AG, 3. the line AB, 4. the line BH
zadanie
Source: GroMar, licencja: CC BY 3.0.
Exercise 2

Draw a right triangular prism ABCA’B’C’. Mark the angle at which the diagonal BA’ of the lateral face ABB’A’ is inclined to the lateral face BCC’B’.

Exercise 3

Draw any dihedral angle. Mark the linear angle of this dihedral angle. Write all its elements in English.

Exercise 4
Ry6WY61rToxqQ
Wersja alternatywna ćwiczenia: Indicate which pairs of expressions or words are translated correctly. Możliwe odpowiedzi: 1. kąt nachylenia prostej k do płaszczyzny p - angle between the line k and the plane p, 2. kąt dwuścienny - dihedral angle, 3. półpłaszczyzna - half-plane, 4. kąt liniowy - linear angle, 5. proste równoległe - perpendicular lines, 6. proste skośne - parallel lines
Rzadanie
Source: GroMar, licencja: CC BY 3.0.
R13mdzElifWqt1
Interaktywna gra, polegająca na łączeniu wyrazów w pary w ciągu jednej minuty. Czas zaczyna upływać wraz z rozpoczęciem gry. Jeden ruch to odkrywanie najpierw jednej potem drugiej karty z wyrazem. Każdy wyraz jest odczytywany. Kolejny ruch to odkrywanie trzeciej i czwartej karty. W ten sposób odsłuchasz wszystkie wyrazy. Nawigacja z poziomu klawiatury za pomocą strzałek, odsłuchiwanie wyrazów enterem lub spacją. Znajdź wszystkie pary wyrazów.
Source: Zespół autorski Politechniki Łódzkiej, licencja: CC BY 3.0.

Glossary

angle between the line k and the plane p
angle between the line k and the plane p

kąt nachylenia prostej k do płaszczyzny p

RrfP0PFK8dtfy1
wymowa w języku angielskim: angle between the line k and the plane p
dihedral angle
dihedral angle

kąt dwuścienny

R2SLecOH4yG1C1
wymowa w języku angielskim: dihedral angle
half‑plane
half‑plane

półpłaszczyzna

RIbknZRQFikUl1
wymowa w języku angielskim: half‑plane
line that breaks the plane
line that breaks the plane

prosta przebijająca płaszczyznę

R1AwXawS01Gs91
wymowa w języku angielskim: line that breaks the plane
linear angle
linear angle

kąt liniowy

Rd2vIaoII7fEc1
wymowa w języku angielskim: linear angle
oblique lines
oblique lines

proste skośne

R1G5XMj8GbaUd1
wymowa w języku angielskim: oblique lines
orthographic projection on the plane
orthographic projection on the plane

rzut prostokątny na płaszczyznę

RrHGoRIxfQQ7f1
wymowa w języku angielskim: orthographic projection on the plane
parallel lines
parallel lines

proste równoległe

RDP3AkRbqJLh41
wymowa w języku angielskim: parallel lines
perpendicular lines
perpendicular lines

proste prostopadłe

RNSVZwPhAW3ZO1
wymowa w języku angielskim: perpendicular lines
plane
plane

płaszczyzna

R1GDyPrf7qq1T1
wymowa w języku angielskim: plane

Keywords

angle between the line k and the plane pangle between the line k and the plane pangle between the line k and the plane p - kąt ostry między tą prostą i jej rzutem prostokątnym l na płaszczyznę p

dihedral angledihedral angledihedral angle - suma dwóch półpłaszczyzn o wspólnej krawędzi i jednego z dwóch obszarów, które te półpłaszczyzny wycinają z przestrzeni

line that breaks the planeline that breaks the planeline that breaks the plane

oblique linesoblique linesoblique lines

orthographic projection on the planeorthographic projection on the planeorthographic projection on the plane