R1SI3r42jhkfA

Applications of the line equation: altitudes, medians, side perpendicular bisectors in a triangle

Source: licencja: CC 0.

Zastosowania równania prostej: wysokości, środkowe, symetralne boków trójkąta

Learning objectives

You will learn to find equations of lines that contain altitudes, medians, perpendicular bisectors of sides of a triangle.

Learning effect

  • You find equations of lines that contain altitudes, medians, perpendicular bisectors of sides of a triangle.

ReD855zFKFMY51
nagranie abstraktu

Revise the following facts: altitudes of a triangle intersect in one point – the orthocentre of a triangle, medians of a triangle intersect in one point – the centroidcentroidcentroid of a triangle and perpendicular bisectors of a triangle intersect in one point that is the centre of a circle circumscribed about this triangle.

Check your knowledge by doing the following exercises.

Task 1
RGYWhCRFFK81K1
nagranie abstraktu

Open the applet: „Triangle, its altitudes, medians and perpendicular bisectors”. One by one, choose options ‘altitudes of a triangle’, ‘medians of a triangle’, ‘perpendicular bisectors of a triangle’. Change the location of vertices of the triangle and observe how altitudes of the triangle, lines that contain them and points of intersection of these lines in relation to the triangle change.

R1eGOScsIpdnY1
Aplet geogebra: Trójkąt: wysokość, mediana, boczna dwusieczna prostopadła. Poniżej znajduje się galeria będąca wersją alternatywną dla aplikacji.
Source: GroMar, licencja: CC BY 3.0.
R1Z6LrdU9Qdjc1
nagranie abstraktu

In the following exercises, you will learn to find equations of lines containing altitudes, medians and perpendicular bisectors of sides of a triangle.

Task 2
RVcF21ijiuwkF1
nagranie abstraktu

Open the applet from the task above: “Triangle, its altitudes, medians and perpendicular bisectors” and set the location of vertices of the ABC triangle so that A=(-3,2), B=(2,-3), C=(5,6). Find:

a. the equation of a line that contains the altitude of the ABC triangle that starts at the A vertex,

b. the line equation that contains the medianmedianmedian BBIndeks dolny 1 of the triangle ABC,

c. the line equation of the perpendicular bisector of the AB side.

R8X8OoTSXyMsT1
nagranie abstraktu

How did you find the line hA? Compare your way with the following algorithm:

  1. calculate the slopeslopeslope of the line BCaBC=6-(-3)5-2=3,

  2. write the equation of the line BC in the form BC : y=3x+b,

  3. insert coordinatescoordinatescoordinates of the point B=(2,-3) to this equation: -3=3·2+b and calculate b=-9,

  4. write the equation of the line BC : y=3x-9,

  5. calculate the slopeslopeslope of the line ha, knowing that it is perpendicular to the line BC : ahA=-13,

  6. write the line equation hA in the form hA : y=-13x+b,

  7. insert coordinatescoordinatescoordinates of the point A=(-3,2) to this equation: 2=-13·(-3)+b and calculate b=1,

  8. write the equation of the line hAy=-13x+1.

Notice that it can be simplified:

RuUjaTQNJ4RNQ1
nagranie abstraktu
  1. calculate the slopeslopeslope of the line BC : aBC=6-(-3)5-2=3,

  2. calculate the slope of the line hA, knowing that it is perpendicular to the line BC : ahA=-13,

  3. write the line equation hA, using the equation:

y=a(x-xA)+yA of a line of a given slopeslopeslope a going through a given point A=(xA,yA):

hA:y=-13(x-(-3))+2, that is y=-13x+1.

R1OlGqz8cCk0h1
nagranie abstraktu

We can find the line containing the medianmedianmedian BB1 in a similar way:

  1. calculate coordinatescoordinatescoordinates of the midpoint B1 of the side AC : B1=-3+52,2+62=1,4,

  2. calculate the slopeslopeslope of the line BB1:  aBB1=4-(-3)1-2=-7,

  3. calculate the equation of the line BB1, using the equation:

y=a(x-xA)+yA of a line of a given slopeslopeslope a and going through a given point A=(xA,yA):

BB1:y=-7(x-2)+(-3), that is y=-7x+11.

R19jpkMpUr1nY1
nagranie abstraktu

Similarly, we can find equation of the perpendicular bisector of the side AC:

  1. calculate coordinatescoordinatescoordinates of the midpoint B1 of the side AC : B1=-3+52,2+62=1,4,

  2. calculate the slopeslopeslope of the line AC : aAC=6-25-(-3)=12,

  3. calculate the slope of the line symAC, knowing that it is perpendicular to the line AC : asymAC=-2,

  4. write the equation of the line symAC, using the equation:

y=a(x-xA)+yA of a line of a given slopeslopeslope a and going through a given point A=(xA,yA):

symAC:y=-2(x-1)+4, that is y=-2x+6.

Task 3
R1IVjqfbbBn3r1
nagranie abstraktu

In the ABC triangle from the previous exercise, find:

a) equations of lines that contain altitudes of the ABC triangle that start at the B and C vertices,

b) line equations that contain medians AA1 and CC1 of the triangle ABC,

c) line equations of the perpendicular bisectors of sides AB and BC.

Verify each obtained equation by using the applet: „Equation of a line that goes through two given points” (M403).

R1X3ekK3Spn2u1
nagranie abstraktu

Do the following exercises.

Task 4
RLn3mUoSNfrDy1
nagranie abstraktu

Point D=(2,0) is the midpoint of the side BC of the triangle ABC, in which A=(-6,1)), B=(-1,-4). Find the equation:

a. of a line that contains the altitude of the ABC triangle that starts at the C vertex,

b. the line equation that contains the medianmedianmedian AC and BC of the triangle ABC,

c. the line equation of the perpendicular bisector of the AC side of the triangle ABC.

Task 5

An extra task:

RAclAQkXIj1C11
nagranie abstraktu

Point P=(6,9) is the midpoint of the point CD of the rhombus ABCD, in which A=(-10,-6)B=(6,-4). Find equations of lines containing sides BC and DC of this rhombus.

Remember:

R1ZraV8z3T3M91
nagranie abstraktu

Formulas for calculating coordinatescoordinatescoordinates of the midpoint of a line segment and condition for perpendicularity of lines are basic information necessary while finding equations of lines containing medians, altitudes and perpendicular bisectors of sides of a triangle.

Exercises

Exercise 1
RvpuK8NDZzuOd
Wersja alternatywna ćwiczenia: There is a triangle ABC in which A = (-5, 3), B = (5, -1), C = (3, 7). Możliwe odpowiedzi: 1. The line whose equation is y = 2x + 1 contains one of the altitudes of the ABC triangle, 2. The perpendicular bisector BC of the triangle ABC is the line whose equation is y=14x+2., 3. The line whose equation is y=-67x+297 contains the median BB1 of the ABC triangle., 4. The line containing the altitude starting at the vertex A contains the median of the ABC triangle
zadanie
Source: GroMar, licencja: CC BY 3.0.
Exercise 2

Points A=(-1,-3) and B=(6,-2) are vertices of the ABC triangle. Altitudes AD and BD of this triangle contain in lines whose equations are y=12x-52 and y=-13x. Find the equation of a line containing the altitude BD of this triangle.

Exercise 3

There are vertices of a triangle A=(-2,1), B=(4,-2) and C=(3,6). Find the equation of a line containing the median CD of this triangle.

Write down your line of reasoning in English.

Exercise 4
RVxE4KpSf9x3I
Wersja alternatywna ćwiczenia: Indicate which pairs of expressions or words are translated correctly. Możliwe odpowiedzi: 1. środek ciężkości - centroid, 2. środek okręgu opisanego - circumcenter, 3. współczynnik kierunkowy prostej - slope, 4. symetralna boku - perpendicular bisector of side, 5. środkowa - coordinates, 6. współrzędne - median
zadanie
Source: GroMar, licencja: CC BY 3.0.
R1L3QgYRIvvhW1
Interaktywna gra, polegająca na łączeniu wyrazów w pary w ciągu jednej minuty. Czas zaczyna upływać wraz z rozpoczęciem gry. Jeden ruch to odkrywanie najpierw jednej potem drugiej karty z wyrazem. Każdy wyraz jest odczytywany. Kolejny ruch to odkrywanie trzeciej i czwartej karty. W ten sposób odsłuchasz wszystkie wyrazy. Nawigacja z poziomu klawiatury za pomocą strzałek, odsłuchiwanie wyrazów enterem lub spacją. Znajdź wszystkie pary wyrazów.
Source: Zespół autorski Politechniki Łódzkiej, licencja: CC BY 3.0.

Glossary

centroid
centroid

środek ciężkości

ReD6mVyVuoaB91
wymowa w języku angielskim: centroid
circumcenter
circumcenter

środek okręgu opisanego

RMKTdytRJr6Sc1
wymowa w języku angielskim: circumcenter
coordinates
coordinates

współrzędne

RnkbvzDuCIdLH1
wymowa w języku angielskim: coordinates
median
median

środkowa

RqlqkVHKO5WIb1
wymowa w języku angielskim: median
perpendicular bisector of side
perpendicular bisector of side

symetralna boku

RpI5o0g1RiAPE1
wymowa w języku angielskim: perpendicular bisector of side
slope
slope

współczynnik kierunkowy prostej

R1IYanrooTsNR1
wymowa w języku angielskim: slope

Keywords

centroidcentroidcentroid - w trójkącie - punkt przecięcia środkowych trójkąta

circumcentercircumcentercircumcenter

coordinatescoordinatescoordinates

medianmedianmedian - w trójkącie - odcinek łączący wierzchołek trójkąta ze środkiem przeciwległego boku

perpendicular bisector of sideperpendicular bisector of sideperpendicular bisector of side