Topicm84d2aa576907cc62_1528449000663_0Topic

Sine, cosine, tangent and cotangent of the acute angle

Levelm84d2aa576907cc62_1528449084556_0Level

Third

Core curriculumm84d2aa576907cc62_1528449076687_0Core curriculum

VII. Trygonometry

The basic level. The student:

  1. applies definitions of functions: sine, cosine, tangent and cotangent for angles from 0° to 180°, especially identifies values of trigonometric functions for angles 30°, 45°, 60°;

  2. finds approximate values of trigonometric functions using tables or the calculator;

  3. finds the approximate value of an angle if the value of the trigonometric function is given;

  4. calculates angles of triangles and lengths of its sides while having appropriate data given (solves triangles).

Timingm84d2aa576907cc62_1528449068082_0Timing

45 minutes

General objectivem84d2aa576907cc62_1528449523725_0General objective

Using the mathematical language to create mathematical texts, including description of reasoning and justification of conclusions, as well as presenting data.

Specific objectivesm84d2aa576907cc62_1528449552113_0Specific objectives

  1. Applying definitions of functions: sine, cosine, tangent and cotangent for angles from 0° to 180°.

  2. Calculating angles and sides of triangles while having appropriate data given (“solving triangles”).

  3. Communicating in English, developing basic mathematical, computer and scientific competences, developing learning skills.

Learning outcomesm84d2aa576907cc62_1528450430307_0Learning outcomes

The student:

  • applies definitions of functions: sine, cosine, tangent and cotangent for angles from 0° to 180°,

  • calculates angles and sides of triangles while having appropriate data given (“solving triangles”).

Methodsm84d2aa576907cc62_1528449534267_0Methods

  1. Situational analysis.

  2. JIGSAW.

Forms of workm84d2aa576907cc62_1528449514617_0Forms of work

  1. Individual work.

  2. Group work.

Lesson stages

Introductionm84d2aa576907cc62_1528450127855_0Introduction

Students revise information about right‑angled triangles, their sides and angles.

The teacher introduces the subject of the lesson – relations between sides and angles in the right‑angled triangle, that are called trigonometric functions.

Procedurem84d2aa576907cc62_1528446435040_0Procedure

Students work individually, using computers. They open the slideshow and observe how trigonometric functions are defined in the right‑angled triangle.

[Slideshow]

After having completed the exercise, students present results of their observations:

Na rysunku przedstawiony jest trójkąt prostokątny o przyprostokątnej z, przeciwprostokątnej równej 15. Kąt ostry nie przylegający do przyprostokątnej z oznaczony jest literą alfa i równy jest 60 stopni.

sinα=length of the cathetus opposite to the angle αlength of the hypotenuse
cosα=length of the cathetus adjacent to the angle αlength of the hypotenuse
tgα=length of the cathetus opposite to the angle αlength of the cathetus adjacent to the angle α
ctgα=length of the cathetus adjacent to the angle αlength of the cathetus opposite to the angle α
sin(90°-α)=cosα
cos(90°-α)=sinα
tg(90°-α)=ctgα
ctg(90°-α)=tgα

Students use obtained information in exercises, using the JIGSAW method.

The teacher divides students into 3 persons groups. Each member of the group gets different task from the tasks below. After solving the tasks, students gather in groups that were doing the same task. They discuss the solutions and clarify any doubts. Then, they return to the initial groups and present the solutions to other members.

Task 1

Values of needed trigonometric functions can be read from Tables of values of trigonometric functions. Using these Tables and the following formula, read needed values and then calculates lengths of sides x, y and z in drawn triangles.

Formula:

tg19°0,3443
ctg71°0,3443

[Illustration]

a) [Illustration]

b) [Illustration]

c) [Illustration]

Task 2

Values of needed trigonometric functions can be read from Tables of values of trigonometric functions. Using these Tables and the following formula, read needed values and then do the task.m84d2aa576907cc62_1527752263647_0Values of needed trigonometric functions can be read from Tables of values of trigonometric functions. Using these Tables and the following formula, read needed values and then do the task.

Formula:

tg19°0,3443
ctg71°0,3443

[Illustration]

Calculate the perimeter of the ABCD parallelogram in which the obtuse angle is equal to 115°, and altitudes are equal to 3 cm and 5 cm.m84d2aa576907cc62_1527752256679_0Calculate the perimeter of the ABCD parallelogram in which the obtuse angle is equal to 115°, and altitudes are equal to 3 cm and 5 cm.

Task 3

Knowing that catheti of the ABC right‑angled triangle have the length 2 and 4 and the acute angle α is opposite to the shorter cathetus, make a drawing and then calculate the value of the expression:

2+sinα·cos2α

The teacher evaluates students’ work and clarifies doubts.

An extra task:

Calculate the perimeter of the ABC triangle knowing that the altitude starting from the vertex C is equal to 10 cm and that |A|=70°,|B|=55°.

Lesson summarym84d2aa576907cc62_1528450119332_0Lesson summary

Students do the revision exercises. Then together they sum‑up the classes, by formulating the conclusions to memorise.

Na rysunku przedstawiony jest trójkąt prostokątny o przyprostokątnej z, przeciwprostokątnej równej 15. Kąt ostry nie przylegający do przyprostokątnej z oznaczony jest literą alfa i równy jest 60 stopni.

sinα=length of the cathetus opposite to the angle αlength of the hypotenuse
cosα=length of the cathetus adjacent to the angle αlength of the hypotenuse
tgα=length of the cathetus opposite to the angle αlength of the cathetus adjacent to the angle α
ctgα=length of the cathetus adjacent to the angle αlength of the cathetus opposite to the angle α
sin(90°-α)=cosα
cos(90°-α)=sinα
tg(90°-α)=ctgα
ctg(90°-α)=tgα

Selected words and expressions used in the lesson plan

cathetuscathetuscathetus

cosine of the anglecosine of the anglecosine of the angle

cotangent of the anglecotangent of the anglecotangent of the angle

hypotenusehypotenusehypotenuse

sine of the anglesine of the anglesine of the angle

tables of the trigonometric functions valuestables of the trigonometric functions valuestables of the trigonometric functions values

tangent of the angletangent of the angletangent of the angle

trigonometric functions of the angle (90° - α)trigonometric functions of the angle (90° - α)trigonometric functions of the angle (90° - α)

m84d2aa576907cc62_1527752263647_0
m84d2aa576907cc62_1527752256679_0
m84d2aa576907cc62_1528449000663_0
m84d2aa576907cc62_1528449084556_0
m84d2aa576907cc62_1528449076687_0
m84d2aa576907cc62_1528449068082_0
m84d2aa576907cc62_1528449523725_0
m84d2aa576907cc62_1528449552113_0
m84d2aa576907cc62_1528450430307_0
m84d2aa576907cc62_1528449534267_0
m84d2aa576907cc62_1528449514617_0
m84d2aa576907cc62_1528450135461_0
m84d2aa576907cc62_1528450127855_0
m84d2aa576907cc62_1528446435040_0
m84d2aa576907cc62_1528450119332_0
cathetus1
cathetus

przyprostokątna

R1BriNQcCo2MQ1
wymowa w języku angielskim: cathetuse
cosine of the angle1
cosine of the angle

cosinus kąta

R7yR9or4TDTP41
wymowa w języku angielskim: cosine of the angle
cotangent of the angle1
cotangent of the angle

cotangens kąta

R1I0F6Cm2y87v1
wymowa w języku angielskim: arc
hypotenuse1
hypotenuse

przeciwprostokątna

Rs85nW4LtxMV61
wymowa w języku angielskim: hypotenuse
sine of the angle1
sine of the angle

sinus kąta

RET6zyhOVX7dc1
wymowa w języku angielskim: sine of the angle
tables of the trigonometric functions values1
tables of the trigonometric functions values

tablice wartości funkcji trygonometrycznych

R75P1BAoLX7FI1
wymowa w języku angielskim: tables of the trigonometric functions values
tangent of the angle1
tangent of the angle

tangens kąta

RgX40MyTkb6Bo1
wymowa w języku angielskim: tangent of the angle
trigonometric functions of the angle (90° - α)1
trigonometric functions of the angle (90° - α)

funkcje trygonometryczne kąta (90° - α)

Rtlf2yixOZ8SG1
wymowa w języku angielskim: trigonometric functions of the angle (90° - α)