Topicmd3dfba9d56d76a0b_1528449000663_0Topic

The sumsumsum of the interior angles of the triangletriangletriangle

Levelmd3dfba9d56d76a0b_1528449084556_0Level

Second

Core curriculummd3dfba9d56d76a0b_1528449076687_0Core curriculum

IX. Polygons and circles. The student:

3) uses the theorem of the interior angles of the triangletriangletriangle;

8) in the isosceles triangleisosceles triangleisosceles triangle indicates the values of the angles knowing the measure of one angle and the length of the sides knowing the perimeter and the length of one side.

Timingmd3dfba9d56d76a0b_1528449068082_0Timing

45 minutes

General objectivemd3dfba9d56d76a0b_1528449523725_0General objective

Matching a mathematical model to a simple situation and using it in various contexts, including practical ones.

Specific objectivesmd3dfba9d56d76a0b_1528449552113_0Specific objectives

1. Using the theorem of the interior angles of the triangletriangletriangle.

2. Calculating the measure of the angles of the isosceles triangleisosceles triangleisosceles triangle knowing the value of one of its angles.

3. Communicating in English; developing mathematical and basic scientific, technical and digital competences; developing learning skills.

Learning outcomesmd3dfba9d56d76a0b_1528450430307_0Learning outcomes

The student:

- calculates the values of the angles of the triangletriangletriangle using the theorem of the sumsumsum of the interior angles,

- indicates the values of the angles of the isosceles triangleisosceles triangleisosceles triangle knowing the value of one of the angles.

Methodsmd3dfba9d56d76a0b_1528449534267_0Methods

1. Snowball sampling.

2. Situational analysis.

Forms of workmd3dfba9d56d76a0b_1528449514617_0Forms of work

1. Individual work.

2. Group work.

Lesson stages

Introductionmd3dfba9d56d76a0b_1528450127855_0Introduction

The student prepares three paper models of:

- an acute‑angled triangle,

- a right‑angled triangleright‑angled triangleright‑angled triangle,

- an isosceles triangleisosceles triangleisosceles triangle,  

and brings them to class.

Proceduremd3dfba9d56d76a0b_1528446435040_0Procedure

The teacher introduces the topic of the lesson: learning the theorem of the interior angles of the triangletriangletriangle and its justification.

Students work using the snowball sampling method. They are going to cut apart the triangles they have brought in such a way their angles form the straight anglestraight anglestraight angle.

Task
Indicate the angles of the acute triangle with the arc. Colour them using three different colours. Cut the triangletriangletriangle apart so that none of the angles is divided. Put the angles together to get their sumsumsum. Repeat these activities with the right and the obtuse triangles.

Now the students together are going to arrive at the theorem of the sum of the interior angles. First, they discuss the theorem in pairs, then in groups of 4 and they make the final version of the theorem.

The sum of the interior angles of the triangle equals the straight angle. In such case the sum of the interior angles of the triangle is 180°.md3dfba9d56d76a0b_1527752263647_0The sum of the interior angles of the triangle equals the straight angle. In such case the sum of the interior angles of the triangle is 180°.

[Illustration 1]

Students check if the given three angles can be the values of the angles of the triangle.

Task
Check if the following angles can be the angles of the triangletriangletriangle:

a) 10°, 10°, 160°,

b) 30°, 60°, 90°,

c) 45°, 45°, 45°.

Students discuss together how can they calculate the value of the angle knowing the values of the two remaining angles.

Task
Students work individually using their computers. They are going to determine the missing values of the triangletriangletriangle.

[Geogebra applet]

Task
Students analyse the solution to the following problem:

a) calculate the measure of the angle between the arms of the isosceles triangleisosceles triangleisosceles triangle knowing that the angle at the base is 30°.

Solution:

In any isosceles triangle the angles at the base are equal so their sum is:
30° + 30° = 60°.
According to the theorem of the sum of the angles of the triangle:
180° – 60° = 120°.
The measure of the angle between the arms of the triangle is 120°.
md3dfba9d56d76a0b_1527712094602_0In any isosceles triangle the angles at the base are equal so their sum is:
30° + 30° = 60°.
According to the theorem of the sum of the angles of the triangle:
180° – 60° = 120°.
The measure of the angle between the arms of the triangle is 120°.

b) calculate the value of the angle at the base of the isosceles triangle knowing that the angle between the arms is 90°.

Solution:

According to the theorem of the sum of the angles of the triangle the sumsumsum of the two remaining sides equals:

180° – 90° = 90°.

In any isosceles triangleisosceles triangleisosceles triangle the angles at the base have the same valuaes.

90° : 2 = 45°.

The measure of the angle at the side is 45°.

Students draw the following conclusion:

- in the isosceles triangletriangletriangle you can calculate the values of the two angles knowing the value of the remaining one.

An extra task
Calculate the measure of the angles of the isosceles triangleisosceles triangleisosceles triangle whose angle at the base is twice as big as the angle between the arms.

Lesson summarymd3dfba9d56d76a0b_1528450119332_0Lesson summary

Students do the exercises summarizing the class.

Then, together they sumsumsum up the classes, drawing the conclusions to memorise:

- The sum of the angles of any triangle equals 180°.
- Knowing the values of two angles we are able to calculate the value of the third angle.
- In the isosceles triangle you can calculate the value of the angles, if you know the value of the remaining angles of the triangle.
md3dfba9d56d76a0b_1527752256679_0- The sum of the angles of any triangle equals 180°.
- Knowing the values of two angles we are able to calculate the value of the third angle.
- In the isosceles triangle you can calculate the value of the angles, if you know the value of the remaining angles of the triangle.

Selected words and expressions used in the lesson plan

angle measureangle measureangle measure

arm of trianglearm of trianglearm of triangle

base of trianglebase of trianglebase of triangle

equilateral triangleequilateral triangleequilateral triangle

isosceles triangleisosceles triangleisosceles triangle

right‑angled triangleright‑angled triangleright‑angled triangle

straight anglestraight anglestraight angle

sumsumsum

triangletriangletriangle

triangle interior angletriangle interior angletriangle interior angle

md3dfba9d56d76a0b_1527752263647_0
md3dfba9d56d76a0b_1527752256679_0
md3dfba9d56d76a0b_1527712094602_0
md3dfba9d56d76a0b_1528449000663_0
md3dfba9d56d76a0b_1528449084556_0
md3dfba9d56d76a0b_1528449076687_0
md3dfba9d56d76a0b_1528449068082_0
md3dfba9d56d76a0b_1528449523725_0
md3dfba9d56d76a0b_1528449552113_0
md3dfba9d56d76a0b_1528450430307_0
md3dfba9d56d76a0b_1528449534267_0
md3dfba9d56d76a0b_1528449514617_0
md3dfba9d56d76a0b_1528450135461_0
md3dfba9d56d76a0b_1528450127855_0
md3dfba9d56d76a0b_1528446435040_0
md3dfba9d56d76a0b_1528450119332_0
sum 1
sum

suma

Rw8c3tkAEzgNG1
wymowa w języku angielskim: sum
triangle1
triangle

trójkąt

R1Cl8Up7vaLnD1
wymowa w języku angielskim: triangle
isosceles triangle 1
isosceles triangle

trójkąt równoramienny - posiada co najmniej dwa boki równej długości

R89UPXdXEctpJ1
wymowa w języku angielskim: isosceles triangle
right‑angled triangle 1
right‑angled triangle

trójkąt prostokątny

R1AjoMaOYkrhg1
wymowa w języku angielskim: right‑angled triangle
straight angle 1
straight angle

kąt półpełny – kąt o mierze 180 stopni

RIVf1bCA7b2NZ1
wymowa w języku angielskim: straight angle
angle measure 1
angle measure

miara kąta

R4A1nB8pMrfiO1
nagranie abstraktu
arm of triangle 1
arm of triangle

ramię trójkąta

Rv0tHfVJqcwlB1
wymowa w języku angielskim: arm of triangle
base of triangle1
base of triangle

podstawa trójkąta

RJcoZGclh4pIt1
wymowa w języku angielskim: base of triangle
equilateral triangle 1
equilateral triangle

trójkąt równoboczny

R1XE75pG2XOiz1
wymowa w języku angielskim: equilateral triangle
triangle interior angle1
triangle interior angle

kąt wewnętrzny trójkąta

R1a9eJ7B45gQb1
wymowa w języku angielskim: triangle interior angle