Warto przeczytać

Aby opisać ruch obrotowy bryły sztywnejBryła sztywnabryły sztywnej, musimy przede wszystkim ustalić, wokół której osi ta bryła się obraca. W wielu znanych z życia codziennego przypadkach obrót następuje dookoła osi przechodzącej przez środek masy bryły. Poniższe fotografie ukazują przykłady takich obracających się brył.

R1H3Qjx8EpQvq
Rys. 1. Trzepaczka w robocie kuchennym.
Źródło: dostępny w internecie: https://pixabay.com/pl/photos/robot-kuchenny-mikser-ekwipunek-3765024/ [dostęp 29.03.2022], domena publiczna.
R1cNHhBXYJOxH
Rys. 2. Końcówka wkręcająca w wiertarko‑wkrętarce.
Źródło: dostępny w internecie: https://pixabay.com/pl/photos/wiertarka-maszyna-ekwipunek-2293827/ [dostęp 29.03.2022], domena publiczna.
R1GWUUPyQAn5V
Rys. 3. Płyta CD.
Źródło: dostępny w internecie: https://pixabay.com/pl/photos/oparzenie-p%C5%82yta-cd-cd-rom-3509504/ [dostęp 29.03.2022], domena publiczna.

Prędkość kątowa ω każdego z punktów obracającej się bryły jest taka sama. Inaczej jest z ich prędkościami liniowymi v, które są tym większe, im dalej od osi obrotu znajdują się te punkty. Związek między wartościami obydwu prędkości ma postać:

v=ω·r,

gdzie r jest odległością punktu od osi obrotu. W obracającym się kole przedstawionym na Rys. 4. długości strzałek obrazują prędkości liniowe punktów, w których te strzałki są zaczepione. Rysunek ten w intuicyjny sposób ilustruje powyższą zależność.

RgBO9wwMborX1
Rys. 4. Prędkości liniowe różnych punktów obracającego się obiektu.
Źródło: Politechnika Warszawska, Wydział Fizyki, licencja: CC BY 4.0.

Oczywiście nie zawsze bryła sztywna obraca się wokół osi przechodzącej przez środek masy. Przyjrzyjmy się domowym drzwiom w trakcie ich otwierania. Zawieszone na zawiasach drzwi obracają się dookoła osi przechodzącej przez ich dłuższą (pionową) krawędź (zob. Rys. 5.).

R16y8VwuZOB6X
Rys. 5. Bryła sztywna obracana dookoła krawędzi.
Źródło: dostępny w internecie: https://pixabay.com/pl/photos/drzwi-wsp%c3%b3%c5%82czesny-wewn%c4%85trz-%c5%9bciana-3036579/ [dostęp 29.03.2022], domena publiczna.

Sytuacja toczącego się koła jest jeszcze bardziej skomplikowana. Wykonuje ono obrót wokół chwilowej osi obrotu, jaką jest linia styku z podłożem. W tym wypadku nadal obowiązuje relacja v=ω·r, ale odległość r badanego punktu bryły od osi obrotu odpowiada jego odległości od miejsca styku koła z podłożem. Zauważmy, że dla ustalonego punktu toczącego się koła ta odległość stale się zmienia wzdłuż średnicy zaznaczonej na czerwono. Na Rys. 6. zaznaczono prędkości poszczególnych punktów ciała obracającego się wokół takiej osi.

RpPCMoYrPQwWw
Rys. 6. Prędkości liniowe bryły obracającej się wokół chwilowej osi obrotu.
Źródło: Politechnika Warszawska, Wydział Fizyki, licencja: CC BY 4.0.

Dlaczego bejsbolista stara się uderzyć piłkę końcem kija? Dlatego że w tym miejscu kij ma największą prędkość liniową (oczywiście, jego wszystkie części mają taką samą prędkość kątową). Piłka uderzona końcem kija uzyska największy pęd!

Niezależnie od tego, gdzie zlokalizowana jest oś obrotu bryły sztywnej, równania opisujące, w jaki sposób kąt obrotu bryły α zmienia się w czasie, wykazują wiele podobieństw do równań opisujących ruch punktu materialnego.

Dla uproszczenia rozważań skupmy się na bryle, która obraca się wokół osi przechodzącej przez jej środek masy. Jeśli taka bryła obraca się ze stałą prędkością kątową ω=const, wtedy kąt obrotu wszystkich jej punktów spełnia zależność:

α(t)=α0+ω·t,

gdzie α0 jest początkowym kątem, od którego rozpoczyna się obrót bryły. Zauważ, że powyższa zależność przypomina wyrażenie na drogę przebytą przez punkt materialny w ruchu jednostajnym prostoliniowym: s(t)=s0+v·t.

W podobny sposób można opisać ruch obrotowy bryły wokół osi przechodzącej przez jej środek masy, w sytuacji gdy bryła obraca się ze stałym przyspieszeniem kątowym ε=const. Wówczas kąt obrotu bryły zależy od czasu w następujący sposób:

α(t)=α0+ω0t +12·εt2,

gdzie α0 jest, jak poprzednio, początkowym kątem, zaś ω0 jest początkową prędkością kątową. Tutaj również łatwo jest dostrzec podobieństwo z ruchem jednostajnie przyspieszonym punktu materialnego, w którym droga zależy od czasu zgodnie z równaniem: s(t)=s0+v0t+12·at2.

Słowniczek

Bryła sztywna
Bryła sztywna

(ang.: rigid body) ciało, którego części składowe nie poruszają się względem siebie.

Gramofon
Gramofon

(ang.: gramophone) urządzenie do odtwarzania dźwięku zapisanego na płytach gramofonowych, popularne do lat 80. XX wieku.