Scenariusz
Temat
Własności liczb naturalnych
Etap edukacyjny
Drugi
Podstawa programowa
I. Liczby naturalne w dziesiątkowym układzie pozycyjnym. Uczeń:
1) zapisuje i odczytuje liczby naturalne wielocyfrowe;
II. Działania na liczbach naturalnych. Uczeń:
7) rozpoznaje liczby podzielne przez 2, 3, 4, 5, 9, 10, 100;
9) rozkłada liczby dwucyfrowe na czynniki pierwsze;
13) znajduje największy wspólny dzielnik (NWD) w sytuacjach nie trudniejszych niż typu NWD(600, 72), NWD(140, 567), NWD(10000, 48), NWD(910, 2016) oraz wyznacza najmniejszą wspólną wielokrotność dwóch liczb naturalnych metodą rozkładu na czynniki;
14) rozpoznaje wielokrotności danej liczby, kwadraty, sześciany, liczby pierwsze, liczby złożone.
Czas
45 minut
Cel ogólny
Używanie prostych, dobrze znanych obiektów matematycznych, interpretowanie pojęć matematycznych i operowanie obiektami matematycznymi.
Cele szczegółowe
1. Utrwalenie wiadomości dotyczących liczb naturalnych.
2. Utrwalenie wiadomości i umiejętności dotyczących podzielności liczb naturalnych.
3. Porozumiewanie się w języku angielskim, rozwijanie matematycznych i podstawowych kompetencji naukowo‑technicznych oraz informatycznych, kształtowanie umiejętności uczenia się.
Efekty uczenia
uczeń:
- utrwala wiadomości dotyczące liczb naturalnych,
- utrwala wiadomości i umiejętności dotyczących podzielności liczb naturalnych.
Metody kształcenia
1. Stacje eksperckie.
2. Analiza sytuacyjna.
Formy pracy
1. Praca z całą klasą.
2. Praca w grupach.
Etapy lekcji
Wprowadzenie do lekcji
Ośmiu uczniów tworzy cztery grupy eksperckie i przygotowuje przed lekcją informacje na jeden temat, wybrany z poniższych.
I. Sposoby zapisywania i odczytywania liczb. Pozycyjny system dziesiątkowy. Duże liczby naturalne.
II. Własności działań w zbiorze liczb naturalnych.
III. Liczby pierwsze i liczby złożone. Cechy podzielności liczb.
IV. Rozkład liczby na czynniki pierwsze. Największy wspólny dziennik, najmniejsza wspólna wielokrotność.
Realizacja lekcji
Uczniowie – eksperci kolejno prezentują przygotowane przez siebie informacje. Po prezentacji odpowiadają na pytania pozostałych uczniów i wyjaśniają wątpliwości.
Informacje , które powinny znaleźć się w prezentacjach grup eksperckich.
I GRUPA EKSPERTÓW
- Do tworzenia liczb używamy obecnie cyfr arabskich: 0, 1, 2, 3, 4, 5, 6, 7, 8 i 9.
- System liczbowy, którego używamy, nazywany jest układem dziesiątkowym pozycyjnym.
- Pozycję cyfry w liczbie określać można, korzystając ze schematu:
[Tabela 1]
- Duże liczby to:
1 000 000 - milion
1 000 000 000 - miliard
1 000 000 000 000 - bilion
000 000 000 000 000 - biliard
1 000 000 000 000 000 000 - trylion
1 000 000 000 000 000 000 000 - tryliard
II GRUPA EKSPERTÓW
- Liczby naturalne można dodawać, odejmować, dzielić i potęgować.
- Kolejność wykonywania działań:1. działania w nawiasach,
2. potęgowanie,
3. mnożenie lub dzielenie – w kolejności zapisu,
4. dodawanie lub odejmowanie – w kolejności zapisu.
- Własności działań:
1. Dodawanie jest działaniem przemiennym i łącznym.
2. Mnożenie jest działaniem przemiennym i łącznym. ,
3. Nie dzielimy przez zero.
III GRUPA EKSPERTÓW
- Liczba pierwsza, to liczba naturalna większa od 1, której jedynymi dzielnikami jest 1 i ona sama.
- Liczba złożona, to liczba naturalna większa od 1, która ma więcej niż dwa dzielniki.
- Liczby 0 i 1 nie są ani liczbami pierwszymi, ani złożonymi.
- Cechy podzielności liczb naturalnych. Liczba naturalna jest podzielna
a. przez 2, jeśli jej cyfrą jedności jest 0, 2, 4, 6 lub 8;
b. przez 3, jeśli suma jej cyfr jest liczbą podzielną przez 3;
c. przez 4, jeśli jej dwie ostatnie cyfry tworzą liczbę podzielną przez 4;
d. przez 5, jeśli jej cyfrą jedności jest 0 lub 5;
e. przez 9, jeśli suma jej cyfr jest liczbą podzielną przez 9;
f. przez 25, jeśli jej dwie ostatnie cyfry tworzą liczbę podzielną przez 25.
IV GRUPA EKSPERTÓW
- Rozkład liczby na czynniki pierwsze, to przedstawienie tej liczby w postaci iloczynu liczb pierwszych.
- NWD (a, b) - największy wspólny dzielnik liczb naturalnych a i b, to największa liczba naturalna dodatnia, która jest jednocześnie dzielnikiem liczby a i dzielnikiem liczby b.
- NNW (a, b) - najmniejsza wspólna wielokrotność liczb a i b, to najmniejsza liczba naturalna dodatnia, która jest podzielna przez liczbę a i liczbę b.
Nauczyciel dzieli uczniów na cztery grupy, które podchodzą do stacji informacyjnych. Każda z grup zadaniowych, rozwiązuje przygotowane przez nauczyciela zadania. Eksperci wspierają uczniów, wyjaśniają wątpliwości. Nauczyciel nadzoruje pracę grup.
Po wykonaniu zadań z danego zakresu, grupy zadaniowe przechodzą do kolejnej stacji.
I GRUPA - zadania
Polecenie 1
Napiszcie po dwie liczby, w których:
a) cyfra setek wynosi 5,
b) cyfra tysięcy wynosi 3,
c) cyfra dziesiątek tysięcy wynosi 7,
Polecenie 2
Wpiszcie każdą liczbę do tabeli, a następnie zapiszcie ją słowami.
a) 5 254 236
b) 124 509 843 548
c) 78 590 452 153 624 752
[Tabela 2]
II GRUPA - zadania
Polecenie 1
Nie wykonując obliczeń, porównajcie wartości wyrażeń arytmetycznych. Wstawcie w miejsce ... znak <, > lub =.
a) 354 + 2541 ... 2541 + 354
b) 368 + ( 3659 + 1452) ... (368 + 1452) + 3659
c) 325 · 254 – 254 ... 254 · 325 - 325
Polecenie 2
Obliczcie, pamiętając o kolejności wykonywania działań.
a) 132 - 122
b) 5891 – 4716 : 9
c) (4125 + 275) : 25 - 12
III GRUPA - zadania
Polecenie 1
Zapiszcie dwie liczby pierwsze nie większe od 60, które spełniają warunek:
a) suma liczb jest liczbą pierwszą,
b) różnica liczb jest liczba pierwszą.
Polecenie 2
Otwórzcie aplet. Korzystając z cech podzielności umieśćcie liczby we właściwych miejscach.
[Geogebra applet]
IV GRUPA – zadania
Polecenie 1
Rozłóżcie na czynniki pierwsze liczby 420 i 525, a następnie obliczcie NWD(420, 525) i NWW(420, 525) .
Polecenie 2
Rozwiążcie zadanie. Zapiszcie odpowiedź.
Zosia podzieliła po równo miedzy swoje koleżanki 48 cukierków czekoladowych, 30 galaretek i 12 cukierków owocowych. Ile koleżanek Zosi otrzymało słodycze? Po ile cukierków każdego rodzaju dostały?
Nauczyciel podsumowuje i ocenia pracę grup, wyjaśnia wątpliwości.
Zadanie dla chętnych
Wpisz w miejsce .... cyfrę tak, aby otrzymana liczba była podzielna przez 18.
25 .... 458 .... 42
Podsumowanie lekcji
Uczniowie wykonują ćwiczenia utrwalające.
Następnie wspólnie podsumowują zajęcia, formułując informacje do zapamiętania :
- Do tworzenia liczb używamy obecnie cyfr arabskich: 0, 1, 2, 3, 4, 5, 6, 7, 8 i 9.
- System liczbowy, którego używamy, nazywany jest układem dziesiątkowym pozycyjnym.
- Działania należy wykonywać w następującej kolejności: działania w nawiasach, potęgowanie, mnożenie lub dzielenie (w kolejności zapisu) i dodawanie lub odejmowani (w kolejności zapisu).
- Dodawanie i mnożenie, to działania przemienne i łączne.
- Nie wykonujemy dzielenia przez liczbę zero.
- Liczba pierwsza, to liczba naturalna większa od 1, której jedynymi dzielnikami jest 1 i ona sama.
- Liczba złożona, to liczba naturalna większa od 1, która ma więcej niż dwa dzielniki.
- Największy wspólny dzielnik liczb naturalnych a i b, to największa liczba naturalna dodatnia, która jest jednocześnie dzielnikiem liczby a i dzielnikiem liczby b.
- Najmniejsza wspólna wielokrotność liczb a i b, to najmniejsza liczba naturalna dodatnia, która jest podzielna przez liczbę a i liczbę b.