R1SI3r42jhkfA

The idea of the sequence. Sequence as a function of natural variable

Source: licencja: CC 0.

Pojęcie ciągu. Ciąg jako funkcja zmiennej naturalnej

Learning objectives

  • You will learn to calculate terms of the sequence defined by the explicit formula or by the recursive formula and to determine monotonicity of the sequence.

Learning effect

  • You calculate terms of the sequence defined by the explicit formula or by the recursive formula and determine monotonicity of the sequence.

RLNk0CCnHnXmv1
nagranie abstraktu

Revise the concept of a function, especially functions whose domain is the set of natural numbers. Revise also terms connected to monotonicity of the function. Prepare information about sequences. See if your material contain following information.

A sequence
Definition: A sequence
R59wn6yAolmSI1
nagranie abstraktu
  • sequencesequencesequence is a function defined in the set of natural, positive numbers. Values of this function for consecutive natural numbers are terms of the sequenceterms of the sequenceterms of the sequence.

  • If a sequence is infinite, then its domain is the set of natural, positive numbers. The domain of a finite sequencesequencesequence is the set {1, 2 ,..., n}.

  • Number sequences are such sequences in which terms are numbers. We mark sequences usually as (aIndeks dolny n), (bIndeks dolny n), (cIndeks dolny n).

Task 1
RAK0T4w41sY6k1
nagranie abstraktu

Open the applet and move points on the plot so that they create a sequencesequencesequence.

R8Wy5wnLMu4Ir1
Aplet geogebry: Kolejne wyrazy ciągu. Poniżej znajduje się galeria ilustracji stanowiących alternatywę dla apletu.
Source: GroMar, licencja: CC BY 3.0.
Task 2
RjjIg0A2C9OKw1
nagranie abstraktu

Calculate the second, the fifth and the tenth term of a sequencesequencesequence defined as follows:

a. an=2n+4,nN+

b. an=n+1n,nN+

c. a1=2 and an+1=an-12, nN+

  • How are called types of formulas that occurred in the exercise?

  • How else can we present a sequencesequencesequence?

Task 3
Rej64rdecF0iU1
nagranie abstraktu

Look at plots and give properties of sequences that they represent.

  • Ask the expert how such sequences are called.

  • Formulate definitions of these sequences.

Task 4
RyJ1WH2bycbkR1
nagranie abstraktu

Investigate monotonicity of the sequencesequencesequence an=n+1n,nN+.

Task 5
RxUGe8L97Qtr11
nagranie abstraktu

Look at plots and give properties of sequences that they represent.

  • How such sequences are called?

  • Formulate definitions of these sequences.

Task 6
R1JUKpRIIbIBv1
nagranie abstraktu

Give answers to the following exercises. Justify them with necessary calculations:

  • How many positive terms are in the sequencesequencesequence defined by the formula: an=n25n+1,nN+?

  • Which terms of the sequenceterms of the sequenceterms of the sequence an=3n22n12n,nN+ are natural numbers?

  • Which terms of the sequence an=(n21)(n24)(n+5),nN+, are close to zero?

If you have difficulties doing the exercise, ask expert for some tips.

R3w2NbQnnyxJ51
nagranie abstraktu

After having completed exercises, present results of your work and conclusions. Are they similar to the following ones?

R1OGZA6BgSO4L1
nagranie abstraktu
  • sequencesequencesequence is called increasing if each one of its terms, starting from the second one, is greater than the directly preceding term, so for each positive integer n there is the inequality aIndeks dolny n+1 > aIndeks dolny n.

  • A sequence is called decreasing if each one of its terms, starting from the second one, is smaller than the directly preceding term, so for each positive integer n there is the inequality aIndeks dolny n+1 < aIndeks dolny n.

  • A sequence is called constant if all terms of this sequencesequencesequence are equal so for any each positive integer n there is the equality aIndeks dolny n+1 = aIndeks dolny n.

  • sequencesequencesequence is called non‑decreasing if each one of its terms, starting from the second one, is not smaller than the directly preceding term, so for each positive integer n there is the inequality n an+1an.

  • A sequence is called non‑increasing if each one of its terms, starting from the second one, is not greater than the directly preceding term, so for each positive integer n there is the inequality an+1an.

  • If a sequence is increasing, decreasing, non‑increasing, non‑decreasing or constant, then we say that this sequencesequencesequence is monotonic. Other sequence are non‑monotonic.

Task 7
R5qMtl5ZWvurm1
nagranie abstraktu

Write the formula for the n‑term of the sequencesequencesequence (aIndeks dolny n), defined recursively:

a1=3 and an+1=an, nN+.

Do the revision exercises.

RH58EV1K3tbEU1
nagranie abstraktu

sequencesequencesequence is a function defined in the set of natural, positive numbers. Values of this function for consecutive natural numbers are terms of the sequenceterms of the sequenceterms of the sequence. A sequence is monotonic if it is increasing, decreasing, non‑increasing, non‑decreasing or constant:

  • The sequencesequencesequence (aIndeks dolny n) is increasing, if an+1>an.

  • The sequence (aIndeks dolny n) is decreasing, if an+1<an.

  • The sequencesequencesequence (aIndeks dolny n) is constant, if an+1=an.

  • The sequence (aIndeks dolny n) is non‑decreasing, if an+1an.

  • The sequencesequencesequence (aIndeks dolny n) is non‑increasing, if an+1an.

Exercises

R7CPrTGpxnyg5
Exercise 1
Wersja alternatywna ćwiczenia: A sequence whose general term is: an=2n2+11n-13. Determine which sentences are true. Możliwe odpowiedzi: 1. is increasing, 2. has seven negative terms, 3. has all non-negative terms, 4. is not monotonic
zadanie
Source: GroMar, licencja: CC BY 3.0.
Exercise 2

Prove that the sequence (an) is decreasing:

an=2-12-3n
Exercise 3

In English, describe an example of a sequence that is not a number sequence.

Exercise 4
Rvk5OAkpixyYP
Wersja alternatywna ćwiczenia: Indicate which pairs of expressions or words are translated correctly. Możliwe odpowiedzi: 1. ciąg - sequence, 2. wyrazy ciągu - terms of the sequence, 3. ciąg monotoniczny - monotonic sequence, 4. ciąg rosnący - increasing sequence, 5. ciąg malejący - constant sequence, 6. ciąg stały - monotonic sequence
zadanie
Source: GroMar, licencja: CC BY 3.0.
R6hCne6DwsV1w1
Interaktywna gra, polegająca na łączeniu wyrazów w pary w ciągu jednej minuty. Czas zaczyna upływać wraz z rozpoczęciem gry. Jeden ruch to odkrywanie najpierw jednej potem drugiej karty z wyrazem. Każdy wyraz jest odczytywany. Kolejny ruch to odkrywanie trzeciej i czwartej karty. W ten sposób odsłuchasz wszystkie wyrazy. Nawigacja z poziomu klawiatury za pomocą strzałek, odsłuchiwanie wyrazów enterem lub spacją. Znajdź wszystkie pary wyrazów.
Source: Zespół autorski Politechniki Łódzkiej, licencja: CC BY 3.0.

Glossary

constant sequence
constant sequence

ciąg stały

RXKW4vHlKDG4S1
wymowa w języku angielskim: constant sequence
decreasing sequence
decreasing sequence

ciąg malejący

RZwsMKckBYrOi1
wymowa w języku angielskim: decreasing sequence
increasing sequence
increasing sequence

ciąg rosnący

RbwG8UgKVQm8R1
wymowa w języku angielskim: increasing sequence
monotonic sequence
monotonic sequence

ciąg monotoniczny

RGjsqpal5q6re1
wymowa w języku angielskim: monotonic sequence
non‑decreasing sequence
non‑decreasing sequence

ciąg niemalejący

RCXRlg0fV7qcl1
wymowa w języku angielskim: non‑decreasing sequence
non‑increasing sequence
non‑increasing sequence

ciąg nierosnący

R1A5sSy13zEC81
wymowa w języku angielskim: non‑increasing sequence
sequence
sequence

ciąg

R1c30IZL8hSSb1
wymowa w języku angielskim: sequence
terms of the sequence
terms of the sequence

wyrazy ciągu

RWGBUnyPbK7WS1
wymowa w języku angielskim: terms of the sequence

Keywords

decreasing sequencedecreasing sequencedecreasing sequence

increasing sequenceincreasing sequenceincreasing sequence

monotonic sequencemonotonic sequencemonotonic sequence – ciąg rosnący, malejący, nierosnący, niemalejący lub stały

sequencesequencesequence – funkcja, określoną w zbiorze liczb naturalnych dodatnich

terms of the sequenceterms of the sequenceterms of the sequence – wartości funkcji ciągu dla kolejnych liczb naturalnych