R1SI3r42jhkfA

The sine and cosine of an acute angle

Source: licencja: CC 0.

Sinus i cosinus kąta ostrego

Learning objectives

You will develop the following competences: communicating in English, mathematical, IT and basic scientific and technical competence, your learning skills.

You will get to know the definition of the sine and cosine functions of an acute angle in a right triangle.

You will get to know the method of calculating the value of the sine and cosine functions of acute angles in a right triangle.

Learning effect

  • You will learn the definition of the sine and cosine functions of an acute angle in a right triangle.

  • You will learn to calculate the value of the sine and cosine functions of acute angles in a right triangle.

Rb2bvg2DKREwV1
nagranie abstraktu

Put your knowledge about the similarity of right triangles in order.

The aim of the lesson – getting to know two trigonometric functionstrigonometric functionstrigonometric functions called the sinesinesine and cosinecosinecosine.

Look for the information about the names of the ratio of the lengths of the sides of a right triangleright triangleright triangle in the available sources. Write down their definitions.

R3APtX6t0rEgV1
nagranie abstraktu

The definition.

R1dHA5DV4HGAn1
Source: GroMar, licencja: CC BY 3.0.
Sine of an acute angle α
Definition: Sine of an acute angle α

In a right triangleright triangleright triangle the ratio of the length of leglegleg opposite angle α and the length of the hypotenuse is called the sinesinesine of an acute angle α. It is indicated as sin α.

sin α=ac
Cosine of an acute angle α
Definition: Cosine of an acute angle α

In a right triangleright triangleright triangle the ratio of the length of the leglegleg adjacent to angle α and the length of the hypotenuse is called the cosinecosinecosine of an acute angle α. It is indicated as cos α.

cos α=bc

Using the definition above, solve the task.

Task 1

right triangleright triangleright triangle with the following lengths of sides are given:

a) 6, 8, 10,

b) 5, 12, 13,

c) 3, 6, 35.

Calculate the value of the sinesinesine and cosinecosinecosine functions of the acute angles in this triangle.

RwsP26bpehKjp1
nagranie abstraktu

Discussion – what may be the values of the sinesinesine and cosinecosinecosine of an acute angle?

Task 2
RHjf2IAQY7JAs1
nagranie abstraktu

Analyse the material presented in the applet. Change the measures of the angle and observe the changes of the value of the sinesinesine and cosinecosinecosine functions. What do you notice? Write down your conclusions.

R167gLFjGgktt1
Geogebra aplet - Wartości funkcji sinus i cosinus. Galeria z opisami alternatywnymi poniżej.
Source: GroMar, licencja: CC BY 3.0.
R13HyOpoaRyU41
nagranie abstraktu

Conclusion:

  • With the increase of the measure of an acute angle, the value of the cosinecosinecosine decreases.

  • For any acute angle α the inequalities are true:

    0 < sin α < 1, 0 < cos α < 1.

Task 3
R1RSmWurDFNcl1
nagranie abstraktu

Find the sinesinesine and cosinecosinecosine functions of both acute angles in the right triangleright triangleright triangle presented in the diagram. What do you notice? Write down your conclusions.

RLsNMioWJunFz1
Source: GroMar, licencja: CC BY 3.0.
RyOfnedOBxOZ51
nagranie abstraktu

Conclusion:

  • For any acute angle α the equalities are true:

    sin (90° - α) = cos α

    cos (90° - α) = sin α

Using the new information, solve the tasks.

Task 4
R1GWlPac7qR3M1
nagranie abstraktu

The diagonal of a rectangle with sides measuring 15 cm and 25 cm divides the rectangle into two triangles. Calculate the values of trigonometric functionstrigonometric functionstrigonometric functions of the acute angles of the triangles.

Task 5
RO8JU5uAJF9Eo1
nagranie abstraktu

Calculate the value of trigonometric function of the acute angles in the right triangleright triangleright triangle whose one of the legs is three times longer than the other leglegleg.

Task 6

Make such angle α, α ∈ (0, 90°), for which cosα=47.

Task 7

An extra task:

Using the data in the diagram below, calculate the value of cosα+sinαsinαcosα.

REQ4xwm6u13G21
Source: GroMar, licencja: CC BY 3.0.
R1GB3gonghx2u1
nagranie abstraktu

Having finished all the tasks, do the consolidation tasks. Formulate the conclusions to memorize.

  • In a right triangleright triangleright triangle the ratio of the length of leglegleg opposite angle α and the length of the hypotenuse is called the sinesinesine of an acute angle α. It is indicated as sin α.

  • In a right triangleright triangleright triangle the ratio of the length of the leglegleg adjacent to angle α and the length of the hypotenuse is called the cosinecosinecosine of an acute angle α. It is indicated as cos α.

  • With the increase of the measure of an acute angle, the value of the cosinecosinecosine decreases.

  • For any acute angle α the inequalities are true:

    0 < sin α < 1, 0 < cos α < 1.

  • For any acute angle α the equalities are true:

    sin (90° - α) = cos α

    cos (90° - α) = sin α

Exercises

RQAPJAVpbgZaL
Exercise 1
Wersja alternatywna ćwiczenia: Determine which sentence is true. Możliwe odpowiedzi: 1. The legs of the right triangle have the lengths of 2 and 14. The sine of the smallest angle equals 210., 2. The cosine of one of the acute angles in a right triangle equals 35. The sine of the other acute angle in this triangle equals 55., 3. An acute angle whose sine equals 89 doesn’t exist.
Exercise 2

In the right triangle the sine of one of its acute angles equals 513, and the hypotenuse has the length of 39. Calculate the perimeter of this triangle.

Exercise 3

A right triangle with the lengths of the legs 35 cm and 28 cm is given.

Explain in English hoe to calculate the value of the sine function of the smallest acute angle.

RNyIv8w1LIALE
Exercise 4
Wersja alternatywna ćwiczenia: Match Polish terms with their English equivalents. sinus Możliwe odpowiedzi: 1. cosine, 2. leg, 3. trigonometric functions, 4. sine, 5. right triangle przyprostokątna Możliwe odpowiedzi: 1. cosine, 2. leg, 3. trigonometric functions, 4. sine, 5. right triangle funkcje trygonometryczne Możliwe odpowiedzi: 1. cosine, 2. leg, 3. trigonometric functions, 4. sine, 5. right triangle cosinus Możliwe odpowiedzi: 1. cosine, 2. leg, 3. trigonometric functions, 4. sine, 5. right triangle trójkąt prostokątny Możliwe odpowiedzi: 1. cosine, 2. leg, 3. trigonometric functions, 4. sine, 5. right triangle
R1d608xZevEon1
Interaktywna gra, polegająca na łączeniu wyrazów w pary w ciągu jednej minuty. Czas zaczyna upływać wraz z rozpoczęciem gry. Jeden ruch to odkrywanie najpierw jednej potem drugiej karty z wyrazem. Każdy wyraz jest odczytywany. Kolejny ruch to odkrywanie trzeciej i czwartej karty. W ten sposób odsłuchasz wszystkie wyrazy. Nawigacja z poziomu klawiatury za pomocą strzałek, odsłuchiwanie wyrazów enterem lub spacją. Znajdź wszystkie pary wyrazów.
Source: Zespół autorski Politechniki Łódzkiej, licencja: CC BY 3.0.

Glossary

cosine
cosine

cosinus

R8LCPaltXw0Iu1
wymowa w języku angielskim: cosine
leg
leg

przyprostokątna

R1HBAGRO6wrdv1
wymowa w języku angielskim: leg
right triangle
right triangle

trójkąt prostokątny

R1IOBaeeOpQHQ1
wymowa w języku angielskim: right triangle
sine
sine

sinus

R1WMNDBSgfuiT1
wymowa w języku angielskim: sine
trigonometric functions
trigonometric functions

funkcje trygonometryczne

R57RwiZOwsoW21
wymowa w języku angielskim: trigonometric functions

Keywords

cosinecosinecosine

leglegleg

right triangleright triangleright triangle

sinesinesine

trigonometric functionstrigonometric functionstrigonometric functions