Kąty przyległe, wierzchołkowe, naprzemianległe i odpowiadające
W tej części podręcznika usystematyzujemy zdobyte wcześniej wiadomości na temat własności figur płaskich i rozszerzymy je w oparciu o nowe narzędzia algebraiczne.
R3uYAh5rctBQx1
Animacja pokazuje dwie proste przecinające się. Między prostymi zaznaczona łukami para kątów wierzchołkowych. Na jednej prostej leży punkt P. Zmieniając położenie punktu P zmienia się wzajemne położenie ramion i wierzchołków zaznaczonych kątów.
Animacja pokazuje dwie proste przecinające się. Między prostymi zaznaczona łukami para kątów wierzchołkowych. Na jednej prostej leży punkt P. Zmieniając położenie punktu P zmienia się wzajemne położenie ramion i wierzchołków zaznaczonych kątów.
Animacja pokazuje dwie proste przecinające się. Między nimi zaznaczona para kątów przyległych. Na jednej prostej leży punkt P. Zmieniając położenie prostej zauważamy, że zmienia się wzajemne położenie ramion i wierzchołków zaznaczonych kątów.
Animacja pokazuje dwie proste przecinające się. Między nimi zaznaczona para kątów przyległych. Na jednej prostej leży punkt P. Zmieniając położenie prostej zauważamy, że zmienia się wzajemne położenie ramion i wierzchołków zaznaczonych kątów.
Kąty przyległe to dwa kąty, które mają jedno ramię wspólne, a pozostałe ramiona dopełniają się do prostej.
Kąty wierzchołkowe to dwa kąty, które mają wspólny wierzchołek i przedłużeniem ramion jednego kąta są odpowiednie ramiona drugiego kąta.
R17EFmv3QSulO1
Rysunek dwóch prostych przecinających się. Między prostymi zaznaczone dwie pary kątów wierzchołkowych: alfa i beta oraz delta i gamma.
Na przykład i na rysunku są kątami przyległymi. Pary kątów wierzchołkowych to i oraz i
R1WGDlblrZsOf1
Animacja pokazuje dwie proste przecinające się. Między nimi zaznaczona para kątów przyległych. Na jednej prostej leży punkt P. Zmieniając położenie punktu P zauważamy, że suma miar zaznaczonych kątów jest zawsze taka sama.
Animacja pokazuje dwie proste przecinające się. Między nimi zaznaczona para kątów przyległych. Na jednej prostej leży punkt P. Zmieniając położenie punktu P zauważamy, że suma miar zaznaczonych kątów jest zawsze taka sama.
Wprost z twierdzenia o sumie miar kątów przyległych wynika, że
oraz
Stąd . Udowodniliśmy w ten sposób następujące twierdzenie.
REatVqTUWir8c1
Animacja pokazuje dwie proste przecinające się. Między prostymi zaznaczona para kątów wierzchołkowych. Na jednej prostej leży punkt P. Zmieniając położenie punktu P, zmienia się wzajemne położenie ramion i wierzchołków zaznaczonych kątów. Zaznaczone kąty zawsze mają taką samą miarę.
Animacja pokazuje dwie proste przecinające się. Między prostymi zaznaczona para kątów wierzchołkowych. Na jednej prostej leży punkt P. Zmieniając położenie punktu P, zmienia się wzajemne położenie ramion i wierzchołków zaznaczonych kątów. Zaznaczone kąty zawsze mają taką samą miarę.
Rysunek dwóch prostych przecinających się. Między prostymi zaznaczone pary kątów wierzchołkowych: beta i 47 stopni oraz alfa i gamma.
Kąty i są wierzchołkowe, więc . Każdy z kątów i jest przyległy do kąta . Zatem
Przykład 2
RfOn1vJXjMjJl1
Animacja pokazuje dwie proste AP i BS, które zostały przecięte trzecią prostą AB. Pomiędzy tymi prostymi utworzyły się kąty odpowiadające. Poruszając punktami P i S zmienia się położenie prostych oraz miary kątów odpowiadających.
Animacja pokazuje dwie proste AP i BS, które zostały przecięte trzecią prostą AB. Pomiędzy tymi prostymi utworzyły się kąty odpowiadające. Poruszając punktami P i S zmienia się położenie prostych oraz miary kątów odpowiadających.
Animacja pokazuje dwie proste AP i BS, które zostały przecięte trzecią prostą AB. Pomiędzy tymi prostymi utworzyły się kąty naprzemianległe. Poruszając punktami P i S zmienia się położenie prostych oraz miary kątów naprzemianległych.
Animacja pokazuje dwie proste AP i BS, które zostały przecięte trzecią prostą AB. Pomiędzy tymi prostymi utworzyły się kąty naprzemianległe. Poruszając punktami P i S zmienia się położenie prostych oraz miary kątów naprzemianległych.
Kąty: i , i i oraz i nazywamy kątami odpowiadającymi.
Kąty i oraz i nazywamy kątami naprzemianległymi wewnętrznymi.
Kąty i oraz i nazywamy kątami naprzemianległymi zewnętrznymi.
RXoOkGDSnZ9A31
Rysunek dwóch prostych k i l, które zostały przecięte trzecią prostą c. Pomiędzy tymi prostymi powstały kąty odpowiadające oraz kąty naprzemianległe.
Przykład 4
W przypadku, gdy proste i są równoległe
Kąty: i , i i oraz i są kątami odpowiadającymi.
Kąty i oraz i są kątami naprzemianległymi wewnętrznymi.
Kąty i oraz i są kątami naprzemianległymi zewnętrznymi.
Rgeu2bwtCJ8GF1
Rysunek dwóch prostych równoległych k, l przeciętych trzecią prostą c. Między prostymi, zaznaczono: kąty alfa i alfa z indeksem dolnym jeden, kąty beta i beta z indeksem dolnym jeden, gamma i gamma z indeksem dolnym jeden, delta i delta z indeksem dolnym jeden.
Przykład 5
RGJpUlcxmNLCv1
Animacja pokazuje dwie proste równoległe przecięte trzecią prostą. Między prostymi zaznaczone cztery różne pary kątów naprzemianległych.
Animacja pokazuje dwie proste równoległe przecięte trzecią prostą. Między prostymi zaznaczone cztery różne pary kątów naprzemianległych.
Animacja pokazuje dwie proste równoległe, które zostały przecięte trzecią prostą. Między prostymi zaznaczone cztery pary kątów naprzemianległych. Zmieniając położenie punktu P, leżącego na jednej z prostych równoległych, zmienia się położenie prostych równoległych i miary zaznaczonych kątów. Zaznaczone parami kąty naprzemianległe mają równe miary.
Animacja pokazuje dwie proste równoległe, które zostały przecięte trzecią prostą. Między prostymi zaznaczone cztery pary kątów naprzemianległych. Zmieniając położenie punktu P, leżącego na jednej z prostych równoległych, zmienia się położenie prostych równoległych i miary zaznaczonych kątów. Zaznaczone parami kąty naprzemianległe mają równe miary.
Animacja pokazuje dwie proste równoległe a, b, które zostały przecięte trzecią prostą c. Między prostymi zaznaczona para kątów odpowiadających alfa i beta. Na prostej a leży punkt. Zmieniając położenie punktu zmieniamy położenie prostych równoległych i miary zaznaczonych kątów. Zaznaczone kąty odpowiadające mają równe miary.
Animacja pokazuje dwie proste równoległe a, b, które zostały przecięte trzecią prostą c. Między prostymi zaznaczona para kątów odpowiadających alfa i beta. Na prostej a leży punkt. Zmieniając położenie punktu zmieniamy położenie prostych równoległych i miary zaznaczonych kątów. Zaznaczone kąty odpowiadające mają równe miary.
Jeżeli dwie proste równoległe przetniemy trzecią prostą, to tak utworzone kąty naprzemianległe są równe i kąty odpowiadające są równe.
Kąty naprzemianległe
Twierdzenie: Kąty naprzemianległe
Jeżeli proste i przetniemy trzecią prostą i tak utworzone kąty naprzemianległe są równe, to proste i są równoległe.
RqgCABM3dzTIy1
Animacja pokazuje w trzech krokach powyższe twierdzenie . Dana są proste k i l oraz prosta przecinająca je. Na prostej l leży punkt P. Zmieniając położenie punktu P zmienia się miary kątów naprzemianległych, tak aby ich miary były równe. Jeśli kąty naprzemianległe są równe to proste k i l są równoległe.
Animacja pokazuje w trzech krokach powyższe twierdzenie . Dana są proste k i l oraz prosta przecinająca je. Na prostej l leży punkt P. Zmieniając położenie punktu P zmienia się miary kątów naprzemianległych, tak aby ich miary były równe. Jeśli kąty naprzemianległe są równe to proste k i l są równoległe.
Jeżeli proste i przetniemy trzecią prostą i tak utworzone kąty odpowiadające są równe, to proste i są równoległe.
RqPFGRrpFtI9j1
Animacja pokazuje w trzech krokach ilustrację powyższego twierdzenia. Dana są proste k i l oraz prosta przecinająca je. Na prostej l leży punkt P. Zmieniając położenie punktu P zmienia się miary kątów odpowiadających, tak aby ich miary były równe. Jeśli kąty odpowiadające są równe to proste k i l są równoległe.
Animacja pokazuje w trzech krokach ilustrację powyższego twierdzenia. Dana są proste k i l oraz prosta przecinająca je. Na prostej l leży punkt P. Zmieniając położenie punktu P zmienia się miary kątów odpowiadających, tak aby ich miary były równe. Jeśli kąty odpowiadające są równe to proste k i l są równoległe.
Proste i zostały przecięte trzecią prostą. Miary kątów zaznaczono na rysunku. Uzasadnimy, że proste i są równoległe.
R11cyTGm4ZFOs1
Rysunek dwóch prostych k i l przeciętych trzecią prostą. Pomiędzy prostą przecinającą a prostą l zaznaczono kąt o mierze 128 stopni. Pomiędzy prostą przecinającą a prostą k zaznaczono kąt o mierze 52 stopnie.
Zaznaczmy kąt przyległy do kąta . Jego miara jest równa
R92b7LjnDNBZx1
Rysunek dwóch prostych k i l przeciętych trzecią prostą. Pomiędzy prostą przecinającą a prostą l zaznaczono kąt o mierze 128 stopni. Pomiędzy prostą przecinającą a prostą k zaznaczono kąt o mierze 52 stopnie. Zaznaczono drugi z kątów odpowiadających o mierze 52 stopnie.
Dwa kąty odpowiadające mają taką samą miarę , skąd wynika, że proste i są równoległe.
Przykład 9
Konstrukcja kątów naprzemianległych.
R1W2I8ibWLovH1
Animacja pokazuje dwie proste równoległe a i b, które zostały przecięte trzecią prostą c. Między prostymi zaznaczona para kątów naprzemianległych alfa i beta. Na prostej a leży punkt. Zmieniając położenie punktu zmienia się położenie prostych równoległych i miary zaznaczonych kątów. Zaznaczone kąty naprzemianległe mają równe miary.
Animacja pokazuje dwie proste równoległe a i b, które zostały przecięte trzecią prostą c. Między prostymi zaznaczona para kątów naprzemianległych alfa i beta. Na prostej a leży punkt. Zmieniając położenie punktu zmienia się położenie prostych równoległych i miary zaznaczonych kątów. Zaznaczone kąty naprzemianległe mają równe miary.
Animacja pokazuje w dziesięciu krokach konstrukcję kątów odpowiadających. Kreślimy prostą a. Na prostej a zaznaczamy punkt A. Wybieramy dowolny punkt B nie leżący na prostej a. Przez punkt B prowadzimy prostą b równoległą do prostej a. Kreślimy prostą c przechodzącą przez punkty A i B. Zaznaczamy kąt K A L, równy alfa, między prostymi a i c. Punkt K leży na prostej a, punkt L leży na prostej c. Zaznaczamy kąt M B N, równy beta, między prostymi b i c. Punkt N leży na prostej c, punkt M leży na prostej b. Kąty K A L i M B N nazywamy kątami odpowiadającymi. Porównując miary kątów K A L i M B N zauważamy, że kąty mają takie same miary.
Animacja pokazuje w dziesięciu krokach konstrukcję kątów odpowiadających. Kreślimy prostą a. Na prostej a zaznaczamy punkt A. Wybieramy dowolny punkt B nie leżący na prostej a. Przez punkt B prowadzimy prostą b równoległą do prostej a. Kreślimy prostą c przechodzącą przez punkty A i B. Zaznaczamy kąt K A L, równy alfa, między prostymi a i c. Punkt K leży na prostej a, punkt L leży na prostej c. Zaznaczamy kąt M B N, równy beta, między prostymi b i c. Punkt N leży na prostej c, punkt M leży na prostej b. Kąty K A L i M B N nazywamy kątami odpowiadającymi. Porównując miary kątów K A L i M B N zauważamy, że kąty mają takie same miary.
Animacja pokazuje dwie proste równoległe przecięte trzecią prostą. Między prostymi zaznaczone osiem kątów. Należy, znając miarę kąta beta, podać miary pozostałych siedmiu kątów.
Animacja pokazuje dwie proste równoległe przecięte trzecią prostą. Między prostymi zaznaczone osiem kątów. Należy, znając miarę kąta beta, podać miary pozostałych siedmiu kątów.